LDR | | 03424cam 2200613Ii 4500 |
001 | | 000000387676 |
005 | | 20180411153459 |
006 | | m o d |
007 | | cr mn||||||||| |
008 | | 150723t20152016flua ob 000 0 eng d |
019 | |
▼a 918621953 |
020 | |
▼a 9781482225013
▼q (electronic bk.) |
020 | |
▼a 1482225018
▼q (electronic bk.) |
020 | |
▼z 9781482225006
▼q (hardcover ;
▼q acid-free paper) |
020 | |
▼z 148222500X
▼q (hardcover ;
▼q acid-free paper) |
029 | 1 |
▼a DEBBG
▼b BV043626428 |
029 | 1 |
▼a DEBSZ
▼b 445111682 |
029 | 1 |
▼a DEBSZ
▼b 457634952 |
035 | |
▼a (OCoLC)914301008
▼z (OCoLC)918621953 |
040 | |
▼a N$T
▼b eng
▼e rda
▼e pn
▼c N$T
▼d IDEBK
▼d N$T
▼d CUS
▼d YDXCP
▼d OCLCF
▼d CDX
▼d COO
▼d EBLCP
▼d DEBSZ
▼d OCLCQ
▼d OSU
▼d OCL
▼d CNCGM
▼d MOR
▼d OCLCQ
▼d MERUC
▼d OCLCQ
▼d 247004 |
050 | 4 |
▼a QA280
▼b .P45 2015 |
072 | 7 |
▼a MAT
▼x 003000
▼2 bisacsh |
072 | 7 |
▼a MAT
▼x 029000
▼2 bisacsh |
082 | 04 |
▼a 519.55
▼2 23 |
100 | 1 |
▼a Pelagatti, Matteo M.,
▼e author. |
245 | 10 |
▼a Time series modelling with unobserved components/
▼c Matteo M. Pelagatti. |
264 | 1 |
▼a Boca Raton, FL :
▼b CRC Press LLC,
▼c [2016] |
264 | 4 |
▼c ?016 |
300 | |
▼a 1 online resource (xvii, 253 pages):
▼b illustrations. |
336 | |
▼a text
▼b txt
▼2 rdacontent |
337 | |
▼a computer
▼b c
▼2 rdamedia |
338 | |
▼a online resource
▼b cr
▼2 rdacarrier |
504 | |
▼a Includes bibliographical references. |
505 | 0 |
▼a Part 1 Statistical prediction and time series -- Statistical Prediction -- Time Series Concepts -- Part 2 Unobserved components -- Unobserved Components Model -- Regressors and Interventions -- Estimation -- Modelling -- Multivariate Models -- Part 3 Applications -- Business Cycle Analysis with UCM -- Case Studies -- Software for UCM. |
520 | |
▼a Despite the unobserved components model (UCM) having many advantages over more popular forecasting techniques based on regression analysis, exponential smoothing, and ARIMA, the UCM is not well known among practitioners outside the academic community. Time Series Modelling with Unobserved Components rectifies this deficiency by giving a practical overview of the UCM approach, covering some theoretical details, several applications, and the software for implementing UCMs. The book's first part discusses introductory time series and prediction theory. Unlike most other books on time series, this. |
588 | 0 |
▼a Print version record. |
590 | |
▼a eBooks on EBSCOhost
▼b All EBSCO eBooks |
650 | 0 |
▼a Time-series analysis. |
650 | 0 |
▼a Missing observations (Statistics) |
650 | 7 |
▼a MATHEMATICS
▼x Applied.
▼2 bisacsh |
650 | 7 |
▼a MATHEMATICS
▼x Probability & Statistics
▼x General.
▼2 bisacsh |
650 | 7 |
▼a Missing observations (Statistics)
▼2 fast
▼0 (OCoLC)fst01023700 |
650 | 7 |
▼a Time-series analysis.
▼2 fast
▼0 (OCoLC)fst01151190 |
655 | 4 |
▼a Electronic books. |
776 | 08 |
▼i Print version:
▼a Pelagatti, Matteo M.
▼t Time series modelling with unobserved components.
▼d Boca Raton : CRC Press, Taylor & Francis, [2016]
▼z 9781482225006
▼w (DLC) 2015034564
▼w (OCoLC)921142357 |
856 | 40 |
▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1031319 |
938 | |
▼a Coutts Information Services
▼b COUT
▼n 31460916 |
938 | |
▼a EBL - Ebook Library
▼b EBLB
▼n EBL2126758 |
938 | |
▼a EBSCOhost
▼b EBSC
▼n 1031319 |
938 | |
▼a ProQuest MyiLibrary Digital eBook Collection
▼b IDEB
▼n cis31460916 |
938 | |
▼a YBP Library Services
▼b YANK
▼n 12382933 |
990 | |
▼a ***1012033 |
994 | |
▼a 92
▼b KRDHU |