MARC보기
LDR05931cam a2200661Mi 4500
001000000411198
00520190131141937
006m d
007cr |n|---|||||
008180414s2018 enk o 000 0 eng d
019 ▼a 1031336792 ▼a 1031364126 ▼a 1035160358 ▼a 1050965054
020 ▼a 9781788831833 ▼q (electronic bk.)
020 ▼a 1788831837 ▼q (electronic bk.)
020 ▼z 9781788831109
020 ▼z 1788831101
0243 ▼a 9781788831109
035 ▼a 1789473 ▼b (N$T)
035 ▼a (OCoLC)1031338741 ▼z (OCoLC)1031336792 ▼z (OCoLC)1031364126 ▼z (OCoLC)1035160358 ▼z (OCoLC)1050965054
037 ▼a B09698 ▼b 01201872
037 ▼a 0367695A-23B9-4FCB-A3CD-2CC3069BA411 ▼b OverDrive, Inc. ▼n http://www.overdrive.com
040 ▼a EBLCP ▼b eng ▼e pn ▼c EBLCP ▼d OCLCQ ▼d MERUC ▼d IDB ▼d OCLCF ▼d OCLCO ▼d VT2 ▼d TEFOD ▼d OCLCQ ▼d UMI ▼d STF ▼d TOH ▼d CEF ▼d DEBBG ▼d N$T ▼d YDX ▼d 247004
050 4 ▼a Q325.5 ▼b .Z333 2018eb
072 7 ▼a COM ▼x 000000 ▼2 bisacsh
08204 ▼a 006.31 ▼2 23
1001 ▼a Zaccone, Giancarlo.
24510 ▼a Deep Learning with TensorFlow : ▼b Explore neural networks and build intelligent systems with Python, 2nd Edition.
250 ▼a 2nd ed.
260 ▼a Birmingham: ▼b Packt Publishing, ▼c 2018.
300 ▼a 1 online resource (483 pages).
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
500 ▼a How does an autoencoder work?
5050 ▼a Cover; Copyright; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; A soft introduction to machine learning; Supervised learning; Unbalanced data; Unsupervised learning; Reinforcement learning; What is deep learning?; Artificial neural networks; The biological neurons; The artificial neuron; How does an ANN learn?; ANNs and the backpropagation algorithm; Weight optimization; Stochastic gradient descent; Neural network architectures; Deep Neural Networks (DNNs); Multilayer perceptron; Deep Belief Networks (DBNs).
5058 ▼a Convolutional Neural Networks (CNNs)AutoEncoders; Recurrent Neural Networks (RNNs); Emergent architectures; Deep learning frameworks; Summary; Chapter 2: A First Look at TensorFlow; A general overview of TensorFlow; What's new in TensorFlow v1.6?; Nvidia GPU support optimized; Introducing TensorFlow Lite; Eager execution; Optimized Accelerated Linear Algebra (XLA); Installing and configuring TensorFlow; TensorFlow computational graph; TensorFlow code structure; Eager execution with TensorFlow; Data model in TensorFlow; Tensor; Rank and shape; Data type; Variables; Fetches.
5058 ▼a Feeds and placeholdersVisualizing computations through TensorBoard; How does TensorBoard work?; Linear regression and beyond; Linear regression revisited for a real dataset; Summary; Chapter 3: Feed-Forward Neural Networks with TensorFlow; Feed-forward neural networks (FFNNs); Feed-forward and backpropagation; Weights and biases; Activation functions; Using sigmoid; Using tanh; Using ReLU; Using softmax; Implementing a feed-forward neural network; Exploring the MNIST dataset; Softmax classifier; Implementing a multilayer perceptron (MLP); Training an MLP; Using MLPs; Dataset description.
5058 ▼a PreprocessingA TensorFlow implementation of MLP for client-subscription assessment; Deep Belief Networks (DBNs); Restricted Boltzmann Machines (RBMs); Construction of a simple DBN; Unsupervised pre-training; Supervised fine-tuning; Implementing a DBN with TensorFlow for client-subscription assessment; Tuning hyperparameters and advanced FFNNs; Tuning FFNN hyperparameters; Number of hidden layers; Number of neurons per hidden layer; Weight and biases initialization; Selecting the most suitable optimizer; GridSearch and randomized search for hyperparameters tuning; Regularization.
5058 ▼a Dropout optimizationSummary; Chapter 4: Convolutional Neural Networks; Main concepts of CNNs; CNNs in action; LeNet5; Implementing a LeNet-5 step by step; AlexNet; Transfer learning; Pretrained AlexNet; Dataset preparation; Fine-tuning implementation; VGG; Artistic style learning with VGG-19; Input images; Content extractor and loss; Style extractor and loss; Merger and total loss; Training; Inception-v3; Exploring Inception with TensorFlow; Emotion recognition with CNNs; Testing the model on your own image; Source code; Summary; Chapter 5: Optimizing TensorFlow Autoencoders.
520 ▼a Compliant with TensorFlow 1.7, this book introduces the core concepts of deep learning. Get implementation and research details on cutting-edge architectures and apply advanced concepts to your own projects. Develop your knowledge of deep neural networks through hands-on model building and examples of real-world data collection.
5880 ▼a Print version record.
590 ▼a Master record variable field(s) change: 072 - Master record variable field(s) change: 072, 082 - OCLC control number change
650 0 ▼a Machine learning.
650 0 ▼a Artificial intelligence.
650 0 ▼a Python (Computer program language)
650 7 ▼a Artificial intelligence. ▼2 fast ▼0 (OCoLC)fst00817247
650 7 ▼a Machine learning. ▼2 fast ▼0 (OCoLC)fst01004795
650 7 ▼a Python (Computer program language) ▼2 fast ▼0 (OCoLC)fst01084736
650 7 ▼a COMPUTERS / General. ▼2 bisacsh
655 4 ▼a Electronic books.
7001 ▼a Karim, Md. Rezaul,
77608 ▼i Print version: ▼a Zaccone, Giancarlo. ▼t Deep Learning with TensorFlow : Explore neural networks and build intelligent systems with Python, 2nd Edition. ▼d Birmingham : Packt Publishing, 짤2018
85640 ▼3 EBSCOhost ▼u http://libproxy.dhu.ac.kr/_Lib_Proxy_Url/http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1789473
938 ▼a EBL - Ebook Library ▼b EBLB ▼n EBL5340529
938 ▼a YBP Library Services ▼b YANK ▼n 15269245
938 ▼a EBSCOhost ▼b EBSC ▼n 1789473
990 ▼a ***1012033
994 ▼a 92 ▼b N$T