LDR | | 05931cam a2200661Mi 4500 |
001 | | 000000411198 |
005 | | 20190131141937 |
006 | | m d |
007 | | cr |n|---||||| |
008 | | 180414s2018 enk o 000 0 eng d |
019 | |
▼a 1031336792
▼a 1031364126
▼a 1035160358
▼a 1050965054 |
020 | |
▼a 9781788831833
▼q (electronic bk.) |
020 | |
▼a 1788831837
▼q (electronic bk.) |
020 | |
▼z 9781788831109 |
020 | |
▼z 1788831101 |
024 | 3 |
▼a 9781788831109 |
035 | |
▼a 1789473
▼b (N$T) |
035 | |
▼a (OCoLC)1031338741
▼z (OCoLC)1031336792
▼z (OCoLC)1031364126
▼z (OCoLC)1035160358
▼z (OCoLC)1050965054 |
037 | |
▼a B09698
▼b 01201872 |
037 | |
▼a 0367695A-23B9-4FCB-A3CD-2CC3069BA411
▼b OverDrive, Inc.
▼n http://www.overdrive.com |
040 | |
▼a EBLCP
▼b eng
▼e pn
▼c EBLCP
▼d OCLCQ
▼d MERUC
▼d IDB
▼d OCLCF
▼d OCLCO
▼d VT2
▼d TEFOD
▼d OCLCQ
▼d UMI
▼d STF
▼d TOH
▼d CEF
▼d DEBBG
▼d N$T
▼d YDX
▼d 247004 |
050 | 4 |
▼a Q325.5
▼b .Z333 2018eb |
072 | 7 |
▼a COM
▼x 000000
▼2 bisacsh |
082 | 04 |
▼a 006.31
▼2 23 |
100 | 1 |
▼a Zaccone, Giancarlo. |
245 | 10 |
▼a Deep Learning with TensorFlow :
▼b Explore neural networks and build intelligent systems with Python, 2nd Edition. |
250 | |
▼a 2nd ed. |
260 | |
▼a Birmingham:
▼b Packt Publishing,
▼c 2018. |
300 | |
▼a 1 online resource (483 pages). |
336 | |
▼a text
▼b txt
▼2 rdacontent |
337 | |
▼a computer
▼b c
▼2 rdamedia |
338 | |
▼a online resource
▼b cr
▼2 rdacarrier |
500 | |
▼a How does an autoencoder work? |
505 | 0 |
▼a Cover; Copyright; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Getting Started with Deep Learning; A soft introduction to machine learning; Supervised learning; Unbalanced data; Unsupervised learning; Reinforcement learning; What is deep learning?; Artificial neural networks; The biological neurons; The artificial neuron; How does an ANN learn?; ANNs and the backpropagation algorithm; Weight optimization; Stochastic gradient descent; Neural network architectures; Deep Neural Networks (DNNs); Multilayer perceptron; Deep Belief Networks (DBNs). |
505 | 8 |
▼a Convolutional Neural Networks (CNNs)AutoEncoders; Recurrent Neural Networks (RNNs); Emergent architectures; Deep learning frameworks; Summary; Chapter 2: A First Look at TensorFlow; A general overview of TensorFlow; What's new in TensorFlow v1.6?; Nvidia GPU support optimized; Introducing TensorFlow Lite; Eager execution; Optimized Accelerated Linear Algebra (XLA); Installing and configuring TensorFlow; TensorFlow computational graph; TensorFlow code structure; Eager execution with TensorFlow; Data model in TensorFlow; Tensor; Rank and shape; Data type; Variables; Fetches. |
505 | 8 |
▼a Feeds and placeholdersVisualizing computations through TensorBoard; How does TensorBoard work?; Linear regression and beyond; Linear regression revisited for a real dataset; Summary; Chapter 3: Feed-Forward Neural Networks with TensorFlow; Feed-forward neural networks (FFNNs); Feed-forward and backpropagation; Weights and biases; Activation functions; Using sigmoid; Using tanh; Using ReLU; Using softmax; Implementing a feed-forward neural network; Exploring the MNIST dataset; Softmax classifier; Implementing a multilayer perceptron (MLP); Training an MLP; Using MLPs; Dataset description. |
505 | 8 |
▼a PreprocessingA TensorFlow implementation of MLP for client-subscription assessment; Deep Belief Networks (DBNs); Restricted Boltzmann Machines (RBMs); Construction of a simple DBN; Unsupervised pre-training; Supervised fine-tuning; Implementing a DBN with TensorFlow for client-subscription assessment; Tuning hyperparameters and advanced FFNNs; Tuning FFNN hyperparameters; Number of hidden layers; Number of neurons per hidden layer; Weight and biases initialization; Selecting the most suitable optimizer; GridSearch and randomized search for hyperparameters tuning; Regularization. |
505 | 8 |
▼a Dropout optimizationSummary; Chapter 4: Convolutional Neural Networks; Main concepts of CNNs; CNNs in action; LeNet5; Implementing a LeNet-5 step by step; AlexNet; Transfer learning; Pretrained AlexNet; Dataset preparation; Fine-tuning implementation; VGG; Artistic style learning with VGG-19; Input images; Content extractor and loss; Style extractor and loss; Merger and total loss; Training; Inception-v3; Exploring Inception with TensorFlow; Emotion recognition with CNNs; Testing the model on your own image; Source code; Summary; Chapter 5: Optimizing TensorFlow Autoencoders. |
520 | |
▼a Compliant with TensorFlow 1.7, this book introduces the core concepts of deep learning. Get implementation and research details on cutting-edge architectures and apply advanced concepts to your own projects. Develop your knowledge of deep neural networks through hands-on model building and examples of real-world data collection. |
588 | 0 |
▼a Print version record. |
590 | |
▼a Master record variable field(s) change: 072 - Master record variable field(s) change: 072, 082 - OCLC control number change |
650 | 0 |
▼a Machine learning. |
650 | 0 |
▼a Artificial intelligence. |
650 | 0 |
▼a Python (Computer program language) |
650 | 7 |
▼a Artificial intelligence.
▼2 fast
▼0 (OCoLC)fst00817247 |
650 | 7 |
▼a Machine learning.
▼2 fast
▼0 (OCoLC)fst01004795 |
650 | 7 |
▼a Python (Computer program language)
▼2 fast
▼0 (OCoLC)fst01084736 |
650 | 7 |
▼a COMPUTERS / General.
▼2 bisacsh |
655 | 4 |
▼a Electronic books. |
700 | 1 |
▼a Karim, Md. Rezaul, |
776 | 08 |
▼i Print version:
▼a Zaccone, Giancarlo.
▼t Deep Learning with TensorFlow : Explore neural networks and build intelligent systems with Python, 2nd Edition.
▼d Birmingham : Packt Publishing, 짤2018 |
856 | 40 |
▼3 EBSCOhost
▼u http://libproxy.dhu.ac.kr/_Lib_Proxy_Url/http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1789473 |
938 | |
▼a EBL - Ebook Library
▼b EBLB
▼n EBL5340529 |
938 | |
▼a YBP Library Services
▼b YANK
▼n 15269245 |
938 | |
▼a EBSCOhost
▼b EBSC
▼n 1789473 |
990 | |
▼a ***1012033 |
994 | |
▼a 92
▼b N$T |