MARC보기
LDR06055cam a2200673Mi 4500
001000000412190
00520190131143013
006m d
007cr |n|---|||||
008180310s2018 enk o 000 0 eng d
019 ▼a 1028626049 ▼a 1028648867 ▼a 1030260934
020 ▼a 9781788394147 ▼q (electronic bk.)
020 ▼a 1788394143 ▼q (electronic bk.)
020 ▼z 9781788392303
035 ▼a 1728047 ▼b (N$T)
035 ▼a (OCoLC)1028218878 ▼z (OCoLC)1028626049 ▼z (OCoLC)1028648867 ▼z (OCoLC)1030260934
037 ▼a 9781788394147 ▼b Packt Publishing
040 ▼a EBLCP ▼b eng ▼e pn ▼c EBLCP ▼d IDB ▼d MERUC ▼d NLE ▼d YDX ▼d OCLCQ ▼d N$T ▼d 247004
050 4 ▼a QA76.87 ▼b .S493 2018eb
072 7 ▼a COM ▼x 000000 ▼2 bisacsh
08204 ▼a 006.32 ▼2 23
1001 ▼a Karim, Md. Rezaul.
24510 ▼a Practical Convolutional Neural Networks : ▼b Implement advanced deep learning models using Python.
260 ▼a Birmingham: ▼b Packt Publishing, ▼c 2018.
300 ▼a 1 online resource (211 pages).
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
500 ▼a Target dataset is small but different from the original training dataset.
5050 ▼a Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Deep Neural Networks a?#x80;#x93; Overview; Building blocks of a neural network; Introduction to TensorFlow; Installing TensorFlow; For macOS X/Linux variants; TensorFlow basics; Basic math with TensorFlow; Softmax in TensorFlow; Introduction to the MNIST datasetA? ; The simplest artificial neural network; Building a single-layer neural network with TensorFlow; Keras deep learning library overview; Layers in the Keras model; Handwritten number recognition with Keras and MNIST.
5058 ▼a Retrieving training and test dataFlattened data; Visualizing the training data; Building the network; Training the network; Testing; Understanding backpropagationA? ; Summary; Chapter 2: Introduction to Convolutional Neural Networks; History of CNNs; Convolutional neural networks; How do computers interpret images?; Code for visualizing an imageA? ; Dropout; Input layer; Convolutional layer; Convolutional layers in Keras; Pooling layer; Practical example a?#x80;#x93; image classification; Image augmentation; Summary; Chapter 3: Build Your First CNN and Performance Optimization.
5058 ▼a CNN architectures and drawbacks of DNNsConvolutional operations; Pooling, stride, and padding operations; Fully connected layer; Convolution and pooling operations in TensorFlow; Applying pooling operations in TensorFlow; Convolution operations in TensorFlow; Training a CNN; Weight and bias initialization; Regularization; Activation functions; Using sigmoid; Using tanh; Using ReLU; Building, training, and evaluating our first CNN; Dataset description; Step 1 a?#x80;#x93; Loading the required packages; Step 2 a?#x80;#x93; Loading the training/test images to generate train/test set.
5058 ▼a Step 3- Defining CNN hyperparametersStep 4 a?#x80;#x93; Constructing the CNN layers; Step 5 a?#x80;#x93; Preparing the TensorFlow graph; Step 6 a?#x80;#x93; Creating a CNN model; Step 7 a?#x80;#x93; Running the TensorFlow graph to train the CNN model; Step 8 a?#x80;#x93; Model evaluation; Model performance optimization; Number of hidden layers; Number of neurons per hidden layer; Batch normalization; Advanced regularization and avoiding overfitting; Applying dropout operations with TensorFlow; Which optimizer to use?; Memory tuning; Appropriate layer placement; Building the second CNN by putting everything together.
5058 ▼a Dataset description and preprocessingCreating the CNN model; Training and evaluating the network; Summary; Chapter 4: Popular CNN Model Architectures; Introduction to ImageNet; LeNet; AlexNet architecture; Traffic sign classifiers using AlexNet; VGGNet architecture; VGG16 image classification code example; GoogLeNet architecture; Architecture insights; Inception module; ResNet architecture; Summary; Chapter 5: Transfer Learning; Feature extraction approach; Target dataset is small and is similar to the original training dataset.
506 ▼a Owing to Legal Deposit regulations this resource may only be accessed from within National Library of Scotland on library computers. For more information contact enquiries@nls.uk. ▼5 StEdNL
520 ▼a This book helps you master CNN, from the basics to the most advanced concepts in CNN such as GANs, instance classification and attention mechanism for vision models and more. You will implement advanced CNN models using complex image and video datasets. By the end of the book you will learn CNN's best practices to implement smart ConvNet ...
5880 ▼a Print version record.
590 ▼a Added to collection customer.56279.3 - Master record variable field(s) change: 072, 650
650 7 ▼a Computers ▼x Intelligence (AI) & Semantics. ▼2 bisacsh
650 7 ▼a Computers ▼x Information Technology. ▼2 bisacsh
650 7 ▼a Information technology: general issues. ▼2 bicssc
650 7 ▼a Computers ▼x Image Processing. ▼2 bisacsh
650 7 ▼a Artificial intelligence. ▼2 bicssc
650 0 ▼a Neural networks (Computer science)
650 0 ▼a Computer vision.
650 0 ▼a Machine learning.
650 0 ▼a Python (Computer program language)
650 7 ▼a COMPUTERS / General ▼2 bisacsh
655 4 ▼a Electronic books.
7001 ▼a Sewak, Mohit,
7001 ▼a Pujari, Pradeep,
77608 ▼i Print version: ▼a Karim, Md. Rezaul. ▼t Practical Convolutional Neural Networks : Implement advanced deep learning models using Python. ▼d Birmingham : Packt Publishing, 짤2018
85640 ▼3 EBSCOhost ▼u http://libproxy.dhu.ac.kr/_Lib_Proxy_Url/http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1728047
938 ▼a EBL - Ebook Library ▼b EBLB ▼n EBL5314627
938 ▼a YBP Library Services ▼b YANK ▼n 15211175
938 ▼a EBSCOhost ▼b EBSC ▼n 1728047
990 ▼a ***1012033
994 ▼a 92 ▼b N$T