MARC보기
LDR01945nam u200409 4500
001000000418283
00520190215162733
008181129s2017 |||||||||||||||||c||eng d
020 ▼a 9780438139770
035 ▼a (MiAaPQ)AAI10688744
035 ▼a (MiAaPQ)umd:18703
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 001.5
1001 ▼a Du, Xianzhi.
24510 ▼a Computer Vision and Deep Learning with Applications to Object Detection, Segmentation, and Document Analysis.
260 ▼a [S.l.]: ▼b University of Maryland, College Park., ▼c 2017.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2017.
300 ▼a 137 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
500 ▼a Advisers: Larry Davis
5021 ▼a Thesis (Ph.D.)--University of Maryland, College Park, 2017.
520 ▼a There are three work on signature matching for document analysis. In the first work, we propose a large-scale signature matching method based on locality sensitive hashing (LSH). Shape Context features are used to describe the structure of signa
520 ▼a There are three work on deep learning for object detection and segmentation. In the first work, we propose a deep neural network fusion architecture for fast and robust pedestrian detection. The proposed network fusion architecture allows for pa
590 ▼a School code: 0117.
650 4 ▼a Artificial intelligence.
650 4 ▼a Computer science.
690 ▼a 0800
690 ▼a 0984
71020 ▼a University of Maryland, College Park. ▼b Electrical Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-11B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0117
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996768 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033