LDR | | 01662nam u200397 4500 |
001 | | 000000418461 |
005 | | 20190215162901 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438006034 |
035 | |
▼a (MiAaPQ)AAI10825328 |
035 | |
▼a (MiAaPQ)ucla:16781 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 247004 |
082 | 0 |
▼a 574 |
100 | 1 |
▼a Li, Qian. |
245 | 10 |
▼a Hierarchical Integration of Heterogeneous Highly Structured Data: The Case of Functional Brain Imaging. |
260 | |
▼a [S.l.]:
▼b University of California, Los Angeles.,
▼c 2018. |
260 | 1 |
▼a Ann Arbor:
▼b ProQuest Dissertations & Theses,
▼c 2018. |
300 | |
▼a 117 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B. |
500 | |
▼a Adviser: Donatello Telesca. |
502 | 1 |
▼a Thesis (Ph.D.)--University of California, Los Angeles, 2018. |
520 | |
▼a Functional brain imaging technologies produce high dimensional data with structured dependency spanning along multiple dimensions. This dissertation focuses on the specific case of Electroencephalography (EEG), even though most methodological de |
590 | |
▼a School code: 0031. |
650 | 4 |
▼a Biostatistics. |
650 | 4 |
▼a Statistics. |
690 | |
▼a 0308 |
690 | |
▼a 0463 |
710 | 20 |
▼a University of California, Los Angeles.
▼b Biostatistics 0132. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-10B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0031 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998755
▼n KERIS
▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a ***1012033 |