MARC보기
LDR01662nam u200397 4500
001000000418461
00520190215162901
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438006034
035 ▼a (MiAaPQ)AAI10825328
035 ▼a (MiAaPQ)ucla:16781
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 574
1001 ▼a Li, Qian.
24510 ▼a Hierarchical Integration of Heterogeneous Highly Structured Data: The Case of Functional Brain Imaging.
260 ▼a [S.l.]: ▼b University of California, Los Angeles., ▼c 2018.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2018.
300 ▼a 117 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Donatello Telesca.
5021 ▼a Thesis (Ph.D.)--University of California, Los Angeles, 2018.
520 ▼a Functional brain imaging technologies produce high dimensional data with structured dependency spanning along multiple dimensions. This dissertation focuses on the specific case of Electroencephalography (EEG), even though most methodological de
590 ▼a School code: 0031.
650 4 ▼a Biostatistics.
650 4 ▼a Statistics.
690 ▼a 0308
690 ▼a 0463
71020 ▼a University of California, Los Angeles. ▼b Biostatistics 0132.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0031
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14998755 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033