LDR | | 02391nam u200433 4500 |
001 | | 000000418686 |
005 | | 20190215163051 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438325692 |
035 | |
▼a (MiAaPQ)AAI10845378 |
035 | |
▼a (MiAaPQ)berkeley:18106 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 247004 |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Liang, Ruochen. |
245 | 10 |
▼a Fast and Stable Low-rank Symmetric Eigen-update. |
260 | |
▼a [S.l.]:
▼b University of California, Berkeley.,
▼c 2018. |
260 | 1 |
▼a Ann Arbor:
▼b ProQuest Dissertations & Theses,
▼c 2018. |
300 | |
▼a 68 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B. |
500 | |
▼a Adviser: Ming Gu. |
502 | 1 |
▼a Thesis (Ph.D.)--University of California, Berkeley, 2018. |
520 | |
▼a Updating the eigensystem of modified symmetric matrices is an important task arising from certain fields of applications. The core of the problem is computing the eigenvalues and orthogonal eigenvectors of a diagonal matrix with symmetric low ra |
520 | |
▼a The main contribution of this thesis is a new method to compute all the eigenvalues and eigenvectors of a real diagonal matrix with a symmetric low rank perturbation. The algorithm computes an orthogonal matrix Q = [q1, q2,..., qn] and a diagona |
520 | |
▼a Aside from solving the eigensystem update problem mentioned above, our proposed method can also be used in the divide and conquer eigenvalue algorithm. Cuppen's divide and conquer algorithm [16] solves a rank-one update of eigensystem in its mer |
520 | |
▼a In our proposed algorithm, eigenpairs are mostly computed by Rayleigh Quotient Iteration safe-guarded with bisection, with each eigenpair requiring O(nr2) flops to compute. Hence the overall computational complexity for our algorithm is O( n2r2 |
590 | |
▼a School code: 0028. |
650 | 4 |
▼a Mathematics. |
650 | 4 |
▼a Applied mathematics. |
690 | |
▼a 0405 |
690 | |
▼a 0364 |
710 | 20 |
▼a University of California, Berkeley.
▼b Applied Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 80-01B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0028 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000057
▼n KERIS
▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a ***1012033 |