MARC보기
LDR02292nam u200445 4500
001000000418729
00520190215163112
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438286467
035 ▼a (MiAaPQ)AAI10845950
035 ▼a (MiAaPQ)cmu:10276
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 620
1001 ▼a Jeong, Minyoung.
24510 ▼a Measurements of Thermal Properties of Phonon Bridge Adhesion Layers, Nanogaps and Metal-organic Frameworks Using Frequency-domain Thermoreflectance (FDTR).
260 ▼a [S.l.]: ▼b Carnegie Mellon University., ▼c 2018.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2018.
300 ▼a 143 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Jonathan A. Malen.
5021 ▼a Thesis (Ph.D.)--Carnegie Mellon University, 2018.
520 ▼a To meet the continuing demand for smaller yet faster electronic devices, many of the components are packed closer together while they produce a significant amount of heat. If the generated heat keeps accumulating due to a lack of efficient therm
520 ▼a Because HAMR heats the magnetic media via a near-field transducer (NFT) which flies above the media with a very short distance of 5 nanometers to locally heat the magnetic domains, the effect of near-field thermal radiation on overall performanc
520 ▼a Not only electronics applications, but also other biological and chemical applications relying on adsorption and desorption of molecules also require faster heat transfer for improved performance because adsorption and desorption processes are e
590 ▼a School code: 0041.
650 4 ▼a Engineering.
650 4 ▼a Materials science.
650 4 ▼a Mechanical engineering.
690 ▼a 0537
690 ▼a 0794
690 ▼a 0548
71020 ▼a Carnegie Mellon University. ▼b Materials Science and Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0041
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000101 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033