MARC보기
LDR02042nam u200397 4500
001000000419037
00520190215163343
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438125995
035 ▼a (MiAaPQ)AAI10902993
035 ▼a (MiAaPQ)umichrackham:001111
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 510
1001 ▼a Pagi, Gilad.
24510 ▼a Enhanced Algorithms for F-Pure Threshold Computation.
260 ▼a [S.l.]: ▼b University of Michigan., ▼c 2018.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2018.
300 ▼a 130 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Karen E. Smith.
5021 ▼a Thesis (Ph.D.)--University of Michigan, 2018.
520 ▼a We explore different computational techniques for the F-pure threshold invariant of monomial ideals and of polynomials. For the former, we introduce a novel algorithm to reduce the number of generators of the ideal and the number of variables in
520 ▼a For polynomials, we introduce a direct computational technique involving properties of roots of Deuring polynomials, which are closely related to Legendre polynomials. This technique is then applied to two different families of polynomials: poly
520 ▼a We end the dissertations with generalizing the Deuring polynomial techniques used thus far, and introducing a way to explicitly stratify the coefficient space of polynomials supported by a fixed set of monomials, by identifying regions represent
590 ▼a School code: 0127.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of Michigan. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0127
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000501 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033