MARC보기
LDR01856nam u200385 4500
001000000419105
00520190215163418
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438127043
035 ▼a (MiAaPQ)AAI10903098
035 ▼a (MiAaPQ)umichrackham:001234
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 629.1
1001 ▼a Caverly, Ryan James.
24510 ▼a Optimal Output Modification and Robust Control Using Minimum Gain and the Large Gain Theorem.
260 ▼a [S.l.]: ▼b University of Michigan., ▼c 2018.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2018.
300 ▼a 188 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: James Richard Forbes.
5021 ▼a Thesis (Ph.D.)--University of Michigan, 2018.
520 ▼a When confronted with a control problem, the input-output properties of the system to be controlled play an important role in determining strategies that can or should be applied, as well as the achievable closed-loop performance. Optimal output
520 ▼a All mathematical models of physical systems are, to some degree, uncertain. Robust control can provide a guarantee of closed-loop stability and/or performance of a system subject to uncertainty, and is often performed using the well-known Small
590 ▼a School code: 0127.
650 4 ▼a Aerospace engineering.
690 ▼a 0538
71020 ▼a University of Michigan. ▼b Aerospace Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0127
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15000592 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033