MARC보기
LDR01898nam u200397 4500
001000000420450
00520190215164503
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438171312
035 ▼a (MiAaPQ)AAI10750853
035 ▼a (MiAaPQ)nyu:13272
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 510
1001 ▼a Fennell, James.
24510 ▼a Two Topics in the Theory of Nonlinear Schrodinger Equations.
260 ▼a [S.l.]: ▼b New York University., ▼c 2018.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2018.
300 ▼a 185 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500 ▼a Adviser: Pierre Germain.
5021 ▼a Thesis (Ph.D.)--New York University, 2018.
520 ▼a This thesis is composed of two works that are both within the broad field of non-linear Schrodinger equations.
520 ▼a The first work is a study of two non-local Hamiltonian PDEs set on the real line that arise naturally as approximating equations for the nonlinear Schrodinger equation with harmonic trapping (quintic and cubic respectively). We begin by proving
520 ▼a The second work concerns the Schrodinger maps equation, which generalizes the linear Schrodinger equation to non-Euclidean domains. We are specifically concerned with the Schrodinger maps equation for equivariant maps from Euclidean space to com
590 ▼a School code: 0146.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a New York University. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-12B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0146
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997136 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033