MARC보기
LDR01667nam u200421 4500
001000000421054
00520190215165013
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438037113
035 ▼a (MiAaPQ)AAI10808343
035 ▼a (MiAaPQ)upenngdas:13234
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 616
1001 ▼a Jaegle, Andrew.
24510 ▼a Learning, Moving, and Predicting with Global Motion Representations.
260 ▼a [S.l.]: ▼b University of Pennsylvania., ▼c 2018.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2018.
300 ▼a 135 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: Kostas Daniilidis.
5021 ▼a Thesis (Ph.D.)--University of Pennsylvania, 2018.
520 ▼a In order to effectively respond to and influence the world they inhabit, animals and other intelligent agents must understand and predict the state of the world and its dynamics. An agent that can characterize how the world moves is better equip
590 ▼a School code: 0175.
650 4 ▼a Neurosciences.
650 4 ▼a Computer science.
650 4 ▼a Artificial intelligence.
690 ▼a 0317
690 ▼a 0984
690 ▼a 0800
71020 ▼a University of Pennsylvania. ▼b Neuroscience.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0175
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997809 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033