MARC보기
LDR01606nam u200397 4500
001000000421065
00520190215165018
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438018587
035 ▼a (MiAaPQ)AAI10808507
035 ▼a (MiAaPQ)purdue:22705
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 621.3
1001 ▼a Zhang, Jiawei.
24510 ▼a Context-Preserving Visual Analytics of Multi-Scale Spatial Aggregation.
260 ▼a [S.l.]: ▼b Purdue University., ▼c 2018.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2018.
300 ▼a 123 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500 ▼a Adviser: David S. Ebert.
5021 ▼a Thesis (Ph.D.)--Purdue University, 2018.
520 ▼a Spatial datasets (i.e., location-based social media, crime incident reports, and demographic data) often exhibit varied distribution patterns at multiple spatial scales. Examining these patterns across different scales enhances the understanding
590 ▼a School code: 0183.
650 4 ▼a Computer engineering.
650 4 ▼a Computer science.
690 ▼a 0464
690 ▼a 0984
71020 ▼a Purdue University. ▼b Electrical and Computer Engineering.
7730 ▼t Dissertation Abstracts International ▼g 79-10B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0183
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997820 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033