MARC보기
LDR01556nam u200373 4500
001000000421071
00520190215165021
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438323995
035 ▼a (MiAaPQ)AAI10808621
035 ▼a (MiAaPQ)berkeley:17741
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 510
1001 ▼a Wilson, Patrick F.
24510 ▼a Asymptotically Conical Metrics and Expanding Ricci Solitons.
260 ▼a [S.l.]: ▼b University of California, Berkeley., ▼c 2018.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2018.
300 ▼a 74 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
500 ▼a Adviser: John Lott.
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2018.
520 ▼a In this thesis we first show, at the level of formal expansions, that any compact manifold can be the sphere at infinity of an asymptotically conical gradient expanding Ricci soliton. We then prove the existence of a smooth blowdown limit for an
590 ▼a School code: 0028.
650 4 ▼a Mathematics.
690 ▼a 0405
71020 ▼a University of California, Berkeley. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 80-01B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997826 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033