LDR | | 01556nam u200373 4500 |
001 | | 000000421071 |
005 | | 20190215165021 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438323995 |
035 | |
▼a (MiAaPQ)AAI10808621 |
035 | |
▼a (MiAaPQ)berkeley:17741 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 247004 |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Wilson, Patrick F. |
245 | 10 |
▼a Asymptotically Conical Metrics and Expanding Ricci Solitons. |
260 | |
▼a [S.l.]:
▼b University of California, Berkeley.,
▼c 2018. |
260 | 1 |
▼a Ann Arbor:
▼b ProQuest Dissertations & Theses,
▼c 2018. |
300 | |
▼a 74 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B. |
500 | |
▼a Adviser: John Lott. |
502 | 1 |
▼a Thesis (Ph.D.)--University of California, Berkeley, 2018. |
520 | |
▼a In this thesis we first show, at the level of formal expansions, that any compact manifold can be the sphere at infinity of an asymptotically conical gradient expanding Ricci soliton. We then prove the existence of a smooth blowdown limit for an |
590 | |
▼a School code: 0028. |
650 | 4 |
▼a Mathematics. |
690 | |
▼a 0405 |
710 | 20 |
▼a University of California, Berkeley.
▼b Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 80-01B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0028 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997826
▼n KERIS
▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a ***1012033 |