MARC보기
LDR02096nam u200421 4500
001000000421085
00520190215165028
008181129s2018 |||||||||||||||||c||eng d
020 ▼a 9780438087880
035 ▼a (MiAaPQ)AAI10808825
035 ▼a (MiAaPQ)uchicago:14328
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 510
1001 ▼a Rubin, Jonathan.
24510 ▼a Equivariant Categorical Coherence Theory.
260 ▼a [S.l.]: ▼b The University of Chicago., ▼c 2018.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2018.
300 ▼a 136 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
500 ▼a Adviser: Jon P. May.
5021 ▼a Thesis (Ph.D.)--The University of Chicago, 2018.
520 ▼a Let G be a finite, discrete group. This thesis studies equivariant symmetric monoidal G-categories and the operads that parametrize them. We devise explicit tools for working with these objects, and then we use them to tackle two conjectures of
520 ▼a The first half of this thesis introduces normed symmetric monoidal categories, and develops their basic theory. These are direct generalizations of the classical structures, and they are presented by generators and isomorphism relations. We expl
520 ▼a The second half of this thesis studies a number of examples. We explain how to construct normed symmetric monoidal structures by twisting a given operation over a diagram, and we examine a shared link between the symmetric monoidal G-categories
590 ▼a School code: 0330.
650 4 ▼a Theoretical mathematics.
650 4 ▼a Mathematics.
690 ▼a 0642
690 ▼a 0405
71020 ▼a The University of Chicago. ▼b Mathematics.
7730 ▼t Dissertation Abstracts International ▼g 79-11B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0330
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997840 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033