LDR | | 01590nam u200397 4500 |
001 | | 000000421232 |
005 | | 20190215165139 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438018303 |
035 | |
▼a (MiAaPQ)AAI10793142 |
035 | |
▼a (MiAaPQ)purdue:22593 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 247004 |
082 | 0 |
▼a 004 |
100 | 1 |
▼a Tan, Xi. |
245 | 10 |
▼a Bayesian Nonparametrics to Model Content, User, and Latent Structure in Hawkes Processes. |
260 | |
▼a [S.l.]:
▼b Purdue University.,
▼c 2018. |
260 | 1 |
▼a Ann Arbor:
▼b ProQuest Dissertations & Theses,
▼c 2018. |
300 | |
▼a 119 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B. |
500 | |
▼a Adviser: Jennifer Neville. |
502 | 1 |
▼a Thesis (Ph.D.)--Purdue University, 2018. |
520 | |
▼a Communication in social networks tends to exhibit complex dynamics both in terms of the users involved and the contents exchanged. For example, email exchanges or activities on social media may exhibit reinforcing dynamics, where earlier events |
590 | |
▼a School code: 0183. |
650 | 4 |
▼a Computer science. |
650 | 4 |
▼a Statistics. |
690 | |
▼a 0984 |
690 | |
▼a 0463 |
710 | 20 |
▼a Purdue University.
▼b Computer Sciences. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-10B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0183 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14997742
▼n KERIS
▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a ***1012033 |