LDR | | 01848nam u200409 4500 |
001 | | 000000422297 |
005 | | 20190215170019 |
008 | | 181129s2018 |||||||||||||||||c||eng d |
020 | |
▼a 9780438094260 |
035 | |
▼a (MiAaPQ)AAI10827970 |
035 | |
▼a (MiAaPQ)indiana:15269 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 247004 |
082 | 0 |
▼a 510 |
100 | 1 |
▼a Zuniga, Andres.
▼0 (orcid)0000-0002-5008-4236. |
245 | 10 |
▼a Geometric Problems in the Calculus of Variations. |
260 | |
▼a [S.l.]:
▼b Indiana University.,
▼c 2018. |
260 | 1 |
▼a Ann Arbor:
▼b ProQuest Dissertations & Theses,
▼c 2018. |
300 | |
▼a 150 p. |
500 | |
▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B. |
500 | |
▼a Adviser: Peter Sternberg. |
502 | 1 |
▼a Thesis (Ph.D.)--Indiana University, 2018. |
520 | |
▼a We study existence questions and qualitative properties of solutions to variational problems related to minimization of geometric quantities, such as generalized notions of length of curves and of the area of surfaces, in a suitable sense. In th |
520 | |
▼a In the second part we prove the existence and show regularity of functions that minimize an inhomogeneous version of the total variation functional on a fixed domain and subject to Dirichlet data, in arbitrary dimensions. Assuming, among other t |
590 | |
▼a School code: 0093. |
650 | 4 |
▼a Mathematics. |
650 | 4 |
▼a Applied mathematics. |
690 | |
▼a 0405 |
690 | |
▼a 0364 |
710 | 20 |
▼a Indiana University.
▼b Mathematics. |
773 | 0 |
▼t Dissertation Abstracts International
▼g 79-11B(E). |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0093 |
791 | |
▼a Ph.D. |
792 | |
▼a 2018 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T14999094
▼n KERIS
▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |
980 | |
▼a 201812
▼f 2019 |
990 | |
▼a ***1012033 |