MARC보기
LDR01684nam u200421 4500
001000000422770
00520190215170408
008181129s2016 |||||||||||||||||c||eng d
020 ▼a 9780438086401
035 ▼a (MiAaPQ)AAI10246404
035 ▼a (MiAaPQ)okstate:14914
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 581
1001 ▼a Espindola, Andres S.
24510 ▼a Eukaryotic Plant Pathogen Detection Through High Throughput DNA/RNA Sequencing Data Analysis.
260 ▼a [S.l.]: ▼b Oklahoma State University., ▼c 2016.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2016.
300 ▼a 158 p.
500 ▼a Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
500 ▼a Adviser: Carla D. Garzon.
5021 ▼a Thesis (Ph.D.)--Oklahoma State University, 2016.
520 ▼a Plant pathogen detection is crucial for developing appropriate management techniques. A variety of tools are available for rapid plant pathogen detection. Most tools rely on unique features of the pathogen to detect its presence. Immunoassays re
590 ▼a School code: 0664.
650 4 ▼a Plant pathology.
650 4 ▼a Bioinformatics.
650 4 ▼a Genetics.
690 ▼a 0480
690 ▼a 0715
690 ▼a 0369
71020 ▼a Oklahoma State University. ▼b Plant Pathology (PhD).
7730 ▼t Dissertation Abstracts International ▼g 79-11B(E).
773 ▼t Dissertation Abstract International
790 ▼a 0664
791 ▼a Ph.D.
792 ▼a 2016
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T14996544 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 201812 ▼f 2019
990 ▼a ***1012033