MARC보기
LDR00000cam u2200205Ii 4500
001000000430305
00520200122122151
007cr cnu---unuuu
008190604s2019 nju ob 001 0 eng d
020 ▼a 9780691189390 ▼q (electronic bk.)
020 ▼a 0691189390 ▼q (electronic bk.)
020 ▼z 9780691161525
035 ▼a 2024426 ▼b (N$T)
035 ▼a (OCoLC)1103440222
037 ▼a 22573/ctvc3fzms ▼b JSTOR
040 ▼a N$T ▼b eng ▼e rda ▼e pn ▼c N$T ▼d N$T ▼d DEGRU ▼d OCLCF ▼d BRX ▼d JSTOR ▼d YDX ▼d UKAHL ▼d CNO ▼d 247004
050 4 ▼a QA614.86 ▼b .F45 2019eb
072 7 ▼a MAT ▼x 038000 ▼2 bisacsh
072 7 ▼a MAT ▼x 000000 ▼2 bisacsh
072 7 ▼a MAT ▼x 040000 ▼2 bisacsh
072 7 ▼a SCI ▼x 012000 ▼2 bisacsh
08204 ▼a 514.742 ▼2 23
1001 ▼a Feldman, David P., ▼e author.
24510 ▼a Chaos and dynamical systems/ ▼c David P. Feldman. ▼h [electronic resource].
260 1 ▼a Princeton: ▼b Princeton University Press, ▼c 2019.
300 ▼a 1 online resource (xiv, 245 pages): ▼b illustrations.
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
4901 ▼a Primers in complex systems
504 ▼a Includes bibliographical references and index.
50500 ▼t Frontmatter -- ▼t CONTENTS -- ▼t Preface -- ▼t 1. Introducing Iterated Functions -- ▼t 2. Introducing Differential Equations -- ▼t 3. Interlude: Mathematical Models and the Newtonian Worldview -- ▼t 4. Chaos I:The Butterfly Effect -- ▼t 5. Chaos II: Deterministic Randomness -- ▼t 6. Bifurcations: Sudden Transitions -- ▼t 7. Universality in Chaos -- ▼t 8. Higher-Dimensional Systems and Phase Space -- ▼t 9. Strange Attractors -- ▼t 10. Conclusion -- ▼t Bibliography -- ▼t Index
520 ▼a Chaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, an important and exciting area that has shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview.In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder.Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.
5880 ▼a Online resource; title from PDF title page (EBSCO, viewed June 5, 2019)
590 ▼a Master record variable field(s) change: 050
650 0 ▼a Fractals.
650 0 ▼a Chaotic behavior in systems.
650 7 ▼a MATHEMATICS / Topology. ▼2 bisacsh
650 7 ▼a MATHEMATICS / General ▼2 bisacsh
650 7 ▼a Chaotic behavior in systems. ▼2 fast ▼0 (OCoLC)fst00852171
650 7 ▼a Fractals. ▼2 fast ▼0 (OCoLC)fst00933507
655 4 ▼a Electronic books.
830 0 ▼a Primers in complex systems.
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2024426
938 ▼a Askews and Holts Library Services ▼b ASKH ▼n AH36380104
938 ▼a YBP Library Services ▼b YANK ▼n 16161183
938 ▼a De Gruyter ▼b DEGR ▼n 9780691189390
938 ▼a EBSCOhost ▼b EBSC ▼n 2024426
990 ▼a ***1008102
991 ▼a E-BOOK
994 ▼a 92 ▼b N$T