MARC보기
LDR00000nam u2200205 4500
001000000431546
00520200224102553
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781687931313
035 ▼a (MiAaPQ)AAI13904223
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 004
1001 ▼a Sizikova, Elena.
24510 ▼a Shape Synthesis Using Structure-aware Reasoning.
260 ▼a [S.l.]: ▼b Princeton University., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 136 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
500 ▼a Advisor: Funkhouser, Thomas.
5021 ▼a Thesis (Ph.D.)--Princeton University, 2019.
506 ▼a This item must not be sold to any third party vendors.
506 ▼a This item must not be added to any third party search indexes.
520 ▼a Shape synthesis is an important area of computer vision and graphics that concerns creation of new shapes and reconstruction from partial data. Its goal is to learn a model that can generate shapes within an object category suitable for novel shape creation, interpolation, completion, editing, and other geometric modeling applications. Existing tools learn shape properties from large collections of shapes. Although these methods have been very successful at learning how to synthesize the coarse shapes of objects in categories with highly diverse shapes, they have not always produced examples that reconstruct important structural elements of a shape. In this thesis, I describe how structure can be incorporated into the synthesis process, and how it can be used to improve generative models.First, I introduce a template-dened skeleton structure for learning a part-aware generative model in typography, where the shapes have a known structure and can be explained by a small number of templates. Next, I present a scenario of noisy archaeological wall painting (fresco) reconstruction from eroded fragments, where there is no well-dened structure and exponentially many arrangement possibilities in this case, I present a cluster evaluation function that guides the assembly process and encourages selection of good clusters. Finally, I describe a semantic landmark-based structure and how it can be used to improve a generative model of examples with extremely varied topology by means of a geometric shape-structure consistency loss. Through exploration of each type of structure, I show how reasoning with proposed structures helps synthesize more accurate and realistic shapes. I also propose a fully automatic framework for font completion. Finally, I design a genetic algorithm for wall painting reconstruction and propose an iterative outlier detection technique based on the eigenvector method.
590 ▼a School code: 0181.
650 4 ▼a Computer science.
690 ▼a 0984
71020 ▼a Princeton University. ▼b Computer Science.
7730 ▼t Dissertations Abstracts International ▼g 81-05B.
773 ▼t Dissertation Abstract International
790 ▼a 0181
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15492524 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK