MARC보기
LDR00000nam u2200205 4500
001000000431841
00520200224105737
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781088366240
035 ▼a (MiAaPQ)AAI13899163
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 530
1001 ▼a Rocks, Jason W.
24510 ▼a Allosteric Functionality in Mechanical and Flow Networks.
260 ▼a [S.l.]: ▼b University of Pennsylvania., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 212 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
500 ▼a Advisor: Liu, Andrea J.
5021 ▼a Thesis (Ph.D.)--University of Pennsylvania, 2019.
506 ▼a This item must not be sold to any third party vendors.
520 ▼a Functionally optimized networks abound in nature, efficiently and precisely controlling the propagation of inputs to perform specific tasks. The regulation of protein activity via allostery presents one of the most well-studied examples: such proteins utilize specific conformational or dynamical changes upon the binding of ligands to facilitate communication between distant active sites. Venation networks in animals, plants, fungi and slime molds also display a type of allosteric communication, having the ability to precisely distribute oxygen and nutrients from a limited number of inputs to locally support growth and activity. Whether via genetic evolution or dynamic adaptation, many of these networks are able to create and control allosteric functionality by locally tuning interactions between nodes. Taking inspiration from this ability to regulate function, we approach allostery as a problem in metamaterials design, asking whether it is possible to create synthetic mechanical and flow networks with allosteric properties. We show that not only is this possible, but is remarkably easy, only requiring a small percentage of interactions in a network to be tuned. Leveraging the large statistical ensembles of allosteric networks generated in this way, we show that the limits of multifinctionality in both flow and mechanical networks are governed by the same constraint satisfaction phase transition, unifying both systems into a single theoretical framework. Finally, we investigate the underlying mechanisms by which allosteric function is created in flow networks. We show that the relationship between structure and function in flow networks is topological in nature, not depending on local details of the network architecture. The approaches presented in this work for studying allostery in both flow and mechanical networks set the blueprint for understanding and controlling general functional complex networks.
590 ▼a School code: 0175.
650 4 ▼a Physics.
690 ▼a 0605
71020 ▼a University of Pennsylvania. ▼b Physics and Astronomy.
7730 ▼t Dissertations Abstracts International ▼g 81-05B.
773 ▼t Dissertation Abstract International
790 ▼a 0175
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15492028 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK