MARC보기
LDR00000nam u2200205 4500
001000000432387
00520200224123655
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781088313343
035 ▼a (MiAaPQ)AAI13898099
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 910
1001 ▼a Yan, Bo.
24510 ▼a Geographic Knowledge Graph Summarization.
260 ▼a [S.l.]: ▼b University of California, Santa Barbara., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 185 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
500 ▼a Advisor: Janowicz, Krzysztof.
5021 ▼a Thesis (Ph.D.)--University of California, Santa Barbara, 2019.
506 ▼a This item must not be sold to any third party vendors.
520 ▼a Geographic knowledge graphs play a significant role in the geospatial semantics paradigm for fulfilling the interoperability, the accessibility, and the conceptualization demands in geographic information science. However, due to the immense quantity of information accompanying and the enormous diversity of geographic knowledge graphs, there are many challenges that hinder the applicability and mass adoption of such useful structured knowledge. In order to tackle these challenges, this dissertation focuses on devising ways in which geographic knowledge graphs can be digested and summarized. Such a summarization task, on the one hand lifts the burden of information overload for end users, on the other hand facilitates the reduction of data storage, speeds up queries, and helps eliminate noise. The main contribution of this dissertation is that it introduces the general concept of geospatial inductive bias and explains different ways this idea can be used in the geographic knowledge graph summarization task. By decomposing the task into separate but related components, this dissertation is based upon three peer-reviewed articles which focus on the hierarchical place type structure, multimedia leaf nodes, and general relation and entity components respectively. A spatial knowledge map interface that illustrates the effectiveness of summarizing geographic knowledge graphs is presented. Throughout the dissertation, top-down knowledge engineering and bottom-up knowledge learning methods are integrated. We hope this dissertation would promote the awareness of this fascinating area and motivate researchers to investigate related questions.
590 ▼a School code: 0035.
650 4 ▼a Computer science.
650 4 ▼a Geographic information science.
690 ▼a 0370
690 ▼a 0984
71020 ▼a University of California, Santa Barbara. ▼b Geography.
7730 ▼t Dissertations Abstracts International ▼g 81-04B.
773 ▼t Dissertation Abstract International
790 ▼a 0035
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15491915 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK