MARC보기
LDR00000nam u2200205 4500
001000000432550
00520200224132200
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781088303306
035 ▼a (MiAaPQ)AAI13899737
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 519
1001 ▼a Van Meter, Lucas.
24510 ▼a A Functorial Approach to Algebraic Vision.
260 ▼a [S.l.]: ▼b University of Washington., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 91 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
500 ▼a Advisor: Lieblich, Max.
5021 ▼a Thesis (Ph.D.)--University of Washington, 2019.
506 ▼a This item must not be sold to any third party vendors.
506 ▼a This item must not be added to any third party search indexes.
520 ▼a We study multiview moduli problems that arise in computer vision. We show that these moduli spaces are always smooth and irreducible, in both the calibrated and uncalibrated cases, for any number of views. We also show that these moduli spaces always embed in suitable Hilbert schemes, and that these embeddings are open immersions for more than four views, extending and refining work of Aholt--Sturmfels--Thomas. We also give a new construction of the space of essential matrices from first principles. This construction enables us to re-prove the fundamental results of Demazure and to re-prove the recent description of the essential variety due to Kileel--Floystad--Ottaviani as well as extend the classical twisted pair covering of the essential variety.
590 ▼a School code: 0250.
650 4 ▼a Mathematics.
650 4 ▼a Matrix.
650 4 ▼a Algebra.
650 4 ▼a Calibration.
690 ▼a 0405
71020 ▼a University of Washington. ▼b Mathematics.
7730 ▼t Dissertations Abstracts International ▼g 81-04B.
773 ▼t Dissertation Abstract International
790 ▼a 0250
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15492099 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK