MARC보기
LDR00000nam u2200205 4500
001000000432553
00520200224132220
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781088305041
035 ▼a (MiAaPQ)AAI13899751
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 650
1001 ▼a Faulkner, James Robert.
24510 ▼a Adaptive Bayesian Nonparametric Smoothing with Markov Random Fields and Shrinkage Priors.
260 ▼a [S.l.]: ▼b University of Washington., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 177 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
500 ▼a Advisor: Minin, Vladimir N.
5021 ▼a Thesis (Ph.D.)--University of Washington, 2019.
506 ▼a This item must not be sold to any third party vendors.
506 ▼a This item must not be added to any third party search indexes.
520 ▼a The need to estimate unknown functions or surfaces arises in many disciplines in science and there are many statistical methods available to do this. Our interest lies in using Bayesian nonparametric approaches to estimate unknown functions. One such approach to nonparametric estimation is based on the Gaussian Markov random field priors. This class of computationally efficient and flexible methods is widely used in applications. There is frequently the need to estimate functions with change points, discontinuities, or abrupt changes, or functions with varying levels of smoothness. Gaussian Markov random fields have limited ability to accurately capture such features. We develop a locally adaptive version of Markov random fields that uses shrinkage priors on the order-k increments of the discretized function and has the flexibility to accommodate a large class of functional behaviors. We show that the horseshoe prior results in superior performance in comparison to other shrinkage priors. The horseshoe prior induces sparsity in the increments, which provides good smoothing properties, and at the same time the heavy tails of the prior allow for jumps and discontinuities in the field. We first apply the method to some standard settings where we use simulated data to compare to other methods and then apply the models to two benchmark data examples frequently used to test nonparametric methods. We use Hamiltonian Monte Carlo to approximate the posterior distribution of model parameters because this method provides superior performance in the presence of the high dimensionality and strong parameter correlations exhibited by our models. We then extend the method to the estimation of effective population sizes using the coalescent process and genetic sequence data. For that application, we develop a custom Markov chain Monte Carlo sampler based on a combination of elliptical slice sampling and Gibbs sampling. We test the method using simulated data and then use it to reconstruct past changes in genetic diversity of human hepatitis C virus in Egypt and to estimate population size changes of ancient and modern steppe bison. Finally, we extend the method for use in the spatial setting, where we apply the method to disease mapping and to the estimation of the intensity of an inhomogeneous spatial point process. Overall, we find that this method is flexible enough to accommodate a variety of data generating models and offers the adaptive properties and computational tractability that make it a useful addition to the Bayesian nonparametric toolbox.
590 ▼a School code: 0250.
650 4 ▼a Statistics.
650 4 ▼a Ecology.
650 4 ▼a Genetics.
650 4 ▼a Resource management.
690 ▼a 0463
690 ▼a 0329
690 ▼a 0369
71020 ▼a University of Washington. ▼b Quantitative Ecology and Resource Management.
7730 ▼t Dissertations Abstracts International ▼g 81-04B.
773 ▼t Dissertation Abstract International
790 ▼a 0250
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15492102 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK