LDR | | 00000nam u2200205 4500 |
001 | | 000000432797 |
005 | | 20200224135751 |
008 | | 200131s2019 ||||||||||||||||| ||eng d |
020 | |
▼a 9781085640237 |
035 | |
▼a (MiAaPQ)AAI13883156 |
040 | |
▼a MiAaPQ
▼c MiAaPQ
▼d 247004 |
082 | 0 |
▼a 530 |
100 | 1 |
▼a He, Huan City. |
245 | 10 |
▼a Topological Phases, Entanglement and Boson Condensation. |
260 | |
▼a [S.l.]:
▼b Princeton University.,
▼c 2019. |
260 | 1 |
▼a Ann Arbor:
▼b ProQuest Dissertations & Theses,
▼c 2019. |
300 | |
▼a 241 p. |
500 | |
▼a Source: Dissertations Abstracts International, Volume: 81-04, Section: B. |
500 | |
▼a Advisor: Bernevig, Bodgan Andrei. |
502 | 1 |
▼a Thesis (Ph.D.)--Princeton University, 2019. |
506 | |
▼a This item must not be sold to any third party vendors. |
520 | |
▼a This dissertation investigates the boson condensation of topological phases and the entanglement entropies of exactly solvable models.First, the bosons in a "parent" (2+1)D topological phase can be condensed to obtain a "child" topological phase. We prove that the boson condensation formalism necessarily has a pair of modular matrix conditions: the modular matrices of the parent and the child topological phases are connected by an integer matrix. These two modular matrix conditions serve as a numerical tool to search for all possible boson condensation transitions from the parent topological phase, and predict the child topological phases. As applications of the modular matrix conditions, (1) we recover the Kitaev's 16-fold way, which classies 16 dierent chiral superconductors in (2+1)D |
590 | |
▼a School code: 0181. |
650 | 4 |
▼a Condensed matter physics. |
690 | |
▼a 0611 |
710 | 20 |
▼a Princeton University.
▼b Physics. |
773 | 0 |
▼t Dissertations Abstracts International
▼g 81-04B. |
773 | |
▼t Dissertation Abstract International |
790 | |
▼a 0181 |
791 | |
▼a Ph.D. |
792 | |
▼a 2019 |
793 | |
▼a English |
856 | 40 |
▼u http://www.riss.kr/pdu/ddodLink.do?id=T15491285
▼n KERIS
▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |
980 | |
▼a 202002
▼f 2020 |
990 | |
▼a ***1008102 |
991 | |
▼a E-BOOK |