MARC보기
LDR00000nam u2200205 4500
001000000433027
00520200225111325
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781392546000
035 ▼a (MiAaPQ)AAI22617631
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 004
1001 ▼a Iliopoulos, Fotios.
24510 ▼a Stochastic Local Search and the Lovasz Local Lemma.
260 ▼a [S.l.]: ▼b University of California, Berkeley., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 130 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
500 ▼a Advisor: Sinclair, Alistair.
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2019.
506 ▼a This item must not be sold to any third party vendors.
520 ▼a This thesis studies randomized local search algorithms for finding solutions of constraint satisfaction problems inspired by and extending the Lovasz Local Lemma (LLL).The LLL is a powerful probabilistic tool for establishing the existence of objects satisfying certain properties (constraints). As a probability statement it asserts that, given a family of "bad" events, if each bad event is individually not very likely and independent of all but a small number of other bad events, then the probability of avoiding all bad events is strictly positive. In a celebrated breakthrough, Moser and Tardos made the LLL constructive for any product probability measure over explicitly presented variables. Specifically, they proved that whenever the LLL condition holds, their Resample algorithm, which repeatedly selects any occurring bad event and resamples all its variables according to the measure, quickly converges to an object with desired properties.In this dissertation we present a framework that extends the work of Moser and Tardos and can be used to analyze arbitrary, possibly complex, focused local search algorithms, i.e., search algorithms whose process for addressing violated constraints, while local, is more sophisticated than obliviously resampling their variables independently of the current configuration. We give several applications of this framework, notably a new vertex coloring algorithm for graphs with sparse vertex neighborhoods that uses a number of colors that matches the algorithmic barrier for random graphs, and polynomial time algorithms for the celebrated (non-constructive) results of Kahn for the Goldberg-Seymour and List-Edge-Coloring Conjectures.Finally, we introduce a generalization of Kolmogorov's notion of commutative algorithms, cast as matrix commutativity, and show that their output distribution approximates the so-called "LLL-distribution", i.e., the distribution obtained by conditioning on avoiding all bad events. This fact allows us to consider questions such as the number of possible distinct final states and the probability that certain portions of the state space are visited by a local search algorithm, extending existing results for the Moser-Tardos algorithm to commutative algorithms.
590 ▼a School code: 0028.
650 4 ▼a Computer science.
690 ▼a 0984
71020 ▼a University of California, Berkeley. ▼b Electrical Engineering & Computer Sciences.
7730 ▼t Dissertations Abstracts International ▼g 81-06B.
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15493474 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK