MARC보기
LDR00000nam u2200205 4500
001000000433108
00520200225112251
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781687924223
035 ▼a (MiAaPQ)AAI22617351
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 614
1001 ▼a Voelker, Lisa.
24510 ▼a Electrical Synapses are Drivers of Neural Plasticity Through Passage of Small Molecules.
260 ▼a [S.l.]: ▼b University of Washington., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 147 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
500 ▼a Advisor: Bai, Jihong.
5021 ▼a Thesis (Ph.D.)--University of Washington, 2019.
506 ▼a This item must not be sold to any third party vendors.
506 ▼a This item must not be added to any third party search indexes.
520 ▼a In order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize to different regions of the nerve ring, indicating that they are not present in the same synapses. Second, removing inx-18 disrupts the distribution of INX-19, while removing inx-19 does not alter INX-18 localization. Finally, by using a fluorescent cGMP reporter, we find that INX-18 and INX-19 have distinct roles in establishing cGMP levels in ASK and ASH. Together, these results demonstrate that electrical synapses containing INX-18 and INX-19 facilitate modulation of ASH nociceptive signaling. Our findings support the idea that a network of electrical synapses mediates cGMP exchange between neurons, enabling modulation of sensory responses and behavior.
590 ▼a School code: 0250.
650 4 ▼a Neurosciences.
650 4 ▼a Physiology.
650 4 ▼a Health sciences.
690 ▼a 0317
690 ▼a 0566
690 ▼a 0719
71020 ▼a University of Washington. ▼b Molecular and Cellular Biology.
7730 ▼t Dissertations Abstracts International ▼g 81-05B.
773 ▼t Dissertation Abstract International
790 ▼a 0250
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15493456 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK