MARC보기
LDR00000nam u2200205 4500
001000000433386
00520200225140947
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781085624251
035 ▼a (MiAaPQ)AAI13864652
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 551
1001 ▼a Salaree, Amirmahmood.
24510 ▼a Theoretical and Computational Contributions to the Modeling of Global Tsunamis.
260 ▼a [S.l.]: ▼b Northwestern University., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 360 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
500 ▼a Advisor: Okal, Emile A.
5021 ▼a Thesis (Ph.D.)--Northwestern University, 2019.
506 ▼a This item must not be sold to any third party vendors.
506 ▼a This item must not be added to any third party search indexes.
520 ▼a I. The distribution of tsunami amplitudes in the open ocean is controlled by source mechanism and bathymetry geometry. Although detailed studies have considered heterogeneity effects in earthquake tsunami sources, little or no attention has been paid to the effects of physical resolution of detailed bathymetry on tsunami waveforms in the far field.Regardless of the simulation method, on one hand, it is desirable to include detailed bathymetry features in the simulation grids in order to predict tsunami amplitudes as accurately as possible, but on the other hand, large detailed grids result in long simulation times. It is therefore of interest to investigate the amount of detail in bathymetric grids that control the most important features in tsunami amplitudes, to assess what constitutes sufficient level for grids in numerical simulations.In this context, we consider the real bathymetry of the Pacific basin and use two different smoothing techniques to decrease the physical resolution of the propagation medium. First, we use a spherical harmonics series approach to decompose the bathymetry of the Pacific Ocean into its components down to a resolution of 4째 (l=100) and create bathymetric grids by summing the resulting terms.Secondly, we use a moving average technique and quantify smoothness by assigning a maximum self-similarity threshold. We then use these grids to simulate the tsunami behavior from pure thrust events of different sizes around the Pacific using the MOST algorithm.Application of four different metrics, namely MT (Metric Tsunami), correlation coefficient, frequency domain analysis, and entropy reveal that for large megathrust events (M0=1029 dyn-cm), one only needs to consider the sum of the first ~20 coefficients (equivalent to a resolution of ~2000 km, or ~1% surface smoothness of the Pacific grid, in order to reproduce the main components of the true distribution of tsunami amplitudes. This would result in simpler simulations, and faster computations in the context of tsunami warning algorithms.II. We study individual tsunamis of landslide or atmospheric origin, through extensive field surveys and numerical modeling, to unravel the exact mechanism of their generation.In the Caspian Sea (1990) and in the case of an aftershock of the 1923 Kamchatka earthquake, we document generation from seismically triggered landslides, with significant implications in terms of tsunami hazard for these provinces. In the Persian Gulf, we attribute the 2017 Dayyer rogue wave to a meteotsunami presumably correlated with a large scale atmospheric disturbance.Although these non-tectonic events occurred on much smaller scales compared to earthquake tsunamis, we investigate their respective source mechanisms and propagation patterns by compiling appropriate geological/morphological datasets in order to better constrain their modeling as hydrodynamic events. In this respect, we will also be able to quantify the tsunami hazard of thevarious basins in which these events took place.
590 ▼a School code: 0163.
650 4 ▼a Geophysics.
650 4 ▼a Geology.
690 ▼a 0373
690 ▼a 0372
71020 ▼a Northwestern University. ▼b Earth and Planetary Sciences.
7730 ▼t Dissertations Abstracts International ▼g 81-02B.
773 ▼t Dissertation Abstract International
790 ▼a 0163
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15491023 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1816162
991 ▼a E-BOOK