MARC보기
LDR00000nam u2200205 4500
001000000433426
00520200225141337
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781088343036
035 ▼a (MiAaPQ)AAI13884845
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 620.11
1001 ▼a Cao, Xuan.
24510 ▼a Continuum Modeling of Cell-extracellular Environment Interaction.
260 ▼a [S.l.]: ▼b University of Pennsylvania., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 193 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
500 ▼a Advisor: Shenoy, Vivek B.
5021 ▼a Thesis (Ph.D.)--University of Pennsylvania, 2019.
506 ▼a This item must not be sold to any third party vendors.
520 ▼a To perform functions such as proliferation, differentiation, and locomotion, living cells establish stable attachments to the extracellular matrix (ECM) via the formation of specialized receptor mediated contact foci, through which they sense the mechanical stimuli from the ECM and adapt their cytoskeleton structures. The cellular contraction, on the other hand, may induce dramatic structural changes to the local extracellular environment, particularly for the fibrous matrices. The main goal of this thesis is to understand the cell-ECM interaction and cell-cell interaction, which lays the foundation to address the role of mechanical stimuli in several physiological and pathological processes such as cell differentiation, wound healing and tumor metastasis. First, we employ the shear-lag model to quantitatively identify the key parameters affecting the size of focal adhesions, which physically link the cytoskeleton to the ECM and serve as the signal hubs. Next, by extending the SLM to three-dimensional and including the fibrous nature of ECM, we study the cell mechanosensing in non-linear ECMs. Furthermore, we focus on the whole-cell level and study nuclear morphology and stress during tumor cell transmigration. Notably, our model explains the driving force for tumor cell transmigration and shows potential treatment by preventing cancer cell extravasation. The nuclear morphology and stress predicted by the model lay the foundation to study the anticipated extent of DNA damage during transmigration. Finally, we study the gap formations due to the failure of cell-cell adhesions in endothelium and show that the adaptive cellular contraction plays a crucial role in preventing gap development and preserving the barrier function.
590 ▼a School code: 0175.
650 4 ▼a Biophysics.
650 4 ▼a Computational physics.
650 4 ▼a Materials science.
690 ▼a 0794
690 ▼a 0786
690 ▼a 0216
71020 ▼a University of Pennsylvania. ▼b Materials Science and Engineering.
7730 ▼t Dissertations Abstracts International ▼g 81-04B.
773 ▼t Dissertation Abstract International
790 ▼a 0175
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15491398 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1816162
991 ▼a E-BOOK