MARC보기
LDR00000nam u2200205 4500
001000000433627
00520200225151732
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781392849446
035 ▼a (MiAaPQ)AAI22615029
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 660
1001 ▼a Rorrer, Julie E.
24510 ▼a Heterogeneous Catalytic Conversion of Biomass-derived Platform Molecules to Fuels and Specialty Chemicals.
260 ▼a [S.l.]: ▼b University of California, Berkeley., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 149 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
500 ▼a Advisor: Bell, Alexis T.
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2019.
506 ▼a This item must not be sold to any third party vendors.
520 ▼a The increasing global consumption of petroleum-derived fuels and chemicals has resulted in rapid generation of atmospheric CO2, the accumulation of which has adverse effects on the global climate. One strategy for lowering the overall emission of CO2 from the combustion of petroleum-derived fuels and lubricants is to replace them with similar products derived from renewable sources. This approach has the potential to be both environmentally responsible and economical, particularly if policy changes incentivize the use of non-fossil energy resources in the future. Biomass, such as agricultural waste, is a readily available source of renewable carbon for producing fuels and chemicals that does not compete with the demand for food. Efforts in biological fermentation of biomass-derived sugars via ABE fermentation have enabled the attainment of renewable butanol, acetone, and ethanol with the molar ratio of 6:3:1. These so-called platform molecules can be upgraded to produce higher carbon number fuels and chemicals using heterogeneous catalysts. This thesis is focused on developing an understanding of several heterogeneous catalytic pathways towards producing fuels and specialty chemicals from renewable platform molecules
520 ▼a By providing extensive catalyst characterization as well as kinetic and mechanistic probing, this thesis elucidates the catalytic properties and reaction conditions that favor the effective production of fuels and specialty chemicals from renewable platform molecules, specifically concentrating on the synthesis of ethers and isobutene. While this thesis focuses on the fundamental understanding of these reactions, the insights gained are part of a larger effort by the scientific community to develop creative solutions to the growing global energy demands in the dawn of an era when continuing to burn fossil fuels is triggering devastating effects on the health of the planet and its inhabitants.
590 ▼a School code: 0028.
650 4 ▼a Chemical engineering.
690 ▼a 0542
71020 ▼a University of California, Berkeley. ▼b Chemical Engineering.
7730 ▼t Dissertations Abstracts International ▼g 81-06B.
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15493262 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK