MARC보기
LDR00000nam u2200205 4500
001000000433808
00520200226104456
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781392849477
035 ▼a (MiAaPQ)AAI22618478
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 530
1001 ▼a Ramasesh, Vinay.
24510 ▼a Quantum Simulation with Superconducting Circuits.
260 ▼a [S.l.]: ▼b University of California, Berkeley., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 113 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
500 ▼a Advisor: Siddiqi, Irfan.
5021 ▼a Thesis (Ph.D.)--University of California, Berkeley, 2019.
506 ▼a This item must not be sold to any third party vendors.
520 ▼a Nonlinear superconducting circuits are a leading candidate to implement quantum information tasks beyond the reach of classical processors. One such task, quantum simulation, involves using a controllable quantum system to study the dynamics of another. In this thesis, we present a series of experiments using small systems of superconducting circuits to perform various quantum tasks relevant to quantum simulation.In the first experiment, we design and build a circuit comprising three transmon qubits whose dynamics mirror those of interacting bosonic particles on a lattice, described by the Bose-Hubbard Hamiltonian. We verify the predictions of the Bose-Hubbard model for this system spectroscopically and then use time-domain measurements to study the decoherence processes affecting the qubits. Using a Raman process, we engineer artificial decay dynamics in the system which allow us to prepare and stabilize otherwise inaccessible states of the transmon array.The second experimental demonstration concerns topological quantum matter. Certain quantum systems are characterized by quantities known as topological invariants, which are robust to local perturbations. These topological invariants are challenging to measure in naturally-occurring systems. We engineer an artificial system, comprising a transmon qubit coupled to a high-Q cavity, capable of undergoing a protocol known as the quantum walk, which also exhibits topological invariants. By using particular non-classical state of the cavity, we modify the quantum walk protocol to make the topological invariant directly accessible.Finally, we implement a hybrid quantum-classical algorithm-known as the variational quantum eigensolver-in a two-transmon quantum processor. As a proof of principle demonstration, we compute the ground-state and low-lying excited state energies of the hydrogen molecule as a function of nuclear separation. We show that an extension of the basic algorithm, known as the quantum subspace expansion, allows for the mitigation of errors caused by decoherence processes affecting the quantum processor.
590 ▼a School code: 0028.
650 4 ▼a Physics.
650 4 ▼a Quantum physics.
690 ▼a 0605
690 ▼a 0599
71020 ▼a University of California, Berkeley. ▼b Physics.
7730 ▼t Dissertations Abstracts International ▼g 81-06B.
773 ▼t Dissertation Abstract International
790 ▼a 0028
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15493543 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK