MARC보기
LDR00000nam u2200205 4500
001000000434083
00520200226140709
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781085625852
035 ▼a (MiAaPQ)AAI13862839
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 519
1001 ▼a Alaviani, Seyyed Shaho.
24510 ▼a Applications of Fixed Point Theory to Distributed Optimization, Robust Convex Optimization, and Stability of Stochastic Systems.
260 ▼a [S.l.]: ▼b Iowa State University., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 123 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
500 ▼a Advisor: Elia, Nicola.
5021 ▼a Thesis (Ph.D.)--Iowa State University, 2019.
506 ▼a This item must not be sold to any third party vendors.
520 ▼a Large-scale multi-agent networked systems are becoming more and more popular due to applications in robotics, machine learning, and signal processing. Although distributed algorithms have been proposed for efficient computations rather than centralized computations for large data optimization, existing algorithms are still suffering from some disadvantages such as distribution dependency or B-connectivity assumption of switching communication graphs. This study applies fixed point theory to analyze distributed optimization problems and to overcome existing difficulties such as distribution dependency or B-connectivity assumption of switching communication graphs. In this study, a new mathematical terminology and a new mathematical optimization problem are defined. It is shown that the optimization problem includes centralized optimization and distributed optimization problems over random networks. Centralized robust convex optimization is defined on Hilbert spaces that is included in the defined optimization problem. An algorithm using diminishing step size is proposed to solve the optimization problem under suitable assumptions. Consequently, as a special case, it results in an asynchronous algorithm for solving distributed optimization over random networks without distribution dependency or B-connectivity assumption of random communication graphs. It is shown that the random Picard iteration or the random Krasnoselskii-Mann iteration may be used for solving the feasibility problem of the defined optimization. Consequently, as special cases, they result in asynchronous algorithms for solving linear algebraic equations and average consensus over random networks without distribution dependency or B-connectivity assumption of switching communication graphs. As a generalization of the proposed algorithm for solving distributed optimization over random networks, an algorithm is proposed for solving distributed optimization with state-dependent interactions and time-varying topologies without B-connectivity assumption on communication graphs. So far these random algorithms are special cases of stochastic discrete-time systems. It is shown that difficulties such as distribution dependency of random variable sequences which arise in using Lyapunov's and LaSalle's methods for stability analysis of stochastic nonlinear discrete-time systems may be overcome by means of fixed point theory.
590 ▼a School code: 0097.
650 4 ▼a Electrical engineering.
650 4 ▼a Applied mathematics.
690 ▼a 0544
690 ▼a 0364
71020 ▼a Iowa State University. ▼b Electrical and Computer Engineering.
7730 ▼t Dissertations Abstracts International ▼g 81-03B.
773 ▼t Dissertation Abstract International
790 ▼a 0097
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15490981 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1816162
991 ▼a E-BOOK