MARC보기
LDR00000nam u2200205 4500
001000000434227
00520200226142910
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781088316474
035 ▼a (MiAaPQ)AAI13881359
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 576.6
1001 ▼a Graepel, Kevin Whittle.
24510 ▼a Tracing Adaptive Pathways in a Proofreading-Deficient Coronavirus.
260 ▼a [S.l.]: ▼b Vanderbilt University., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 300 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
500 ▼a Advisor: Denison, Mark R.
5021 ▼a Thesis (Ph.D.)--Vanderbilt University, 2019.
506 ▼a This item must not be sold to any third party vendors.
520 ▼a Coronaviruses (CoVs) are a family of positive-sense RNA viruses that cause human illnesses ranging from the common cold to severe and lethal respiratory disease. Since 2002, two CoVs (SARS- and MERS-CoV) have emerged as zoonoses with pandemic potential, and closely-related viruses continue to circulate in animal populations. CoVs are distinguished from other RNA viruses by the complexity of their replication machinery, including the presence of a 3'-5' exoribonuclease (ExoN) within nonstructural protein 14 (nsp14-ExoN). The CoV-nsp14-ExoN is the first and, to date, only proofreading enzyme identified in an RNA virus and mediates high-fidelity replication. ExoN activity is critical for CoV biology, as proofreading-deficient CoVs with disrupted ExoN activity [ExoN(-)] are either nonviable or have significant defects in replication, RNA synthesis, fidelity, and in vivo virulence. Remarkably, despite these fitness costs, ExoN(-) CoVs do not revert the engineered mutations under diverse selective environments. In this dissertation, I use experimental evolution to examine the adaptive landscape of an ExoN(-) CoV, murine hepatitis virus (MHV). I show that the lack of reversion of MHV-ExoN(-) is driven by the limitations and opportunities of the adaptive landscape, which favors compensation over direct reversion. These results reveal a remarkable capacity for MHV to compensate for a disrupted ExoN, support the proposed link between CoV fidelity and fitness, illuminate complex functional and evolutionary relationships between CoV replicase proteins, and identify potential mechanisms for stabilization of attenuated ExoN(-) CoVs. New assays for measuring CoV fidelity and fitness are also discussed.
590 ▼a School code: 0242.
650 4 ▼a Virology.
690 ▼a 0720
71020 ▼a Vanderbilt University. ▼b Microbiology and Immunology.
7730 ▼t Dissertations Abstracts International ▼g 81-04B.
773 ▼t Dissertation Abstract International
790 ▼a 0242
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15491183 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1816162
991 ▼a E-BOOK