MARC보기
LDR00000nam u2200205 4500
001000000434295
00520200226145104
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781085674249
035 ▼a (MiAaPQ)AAI22616984
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 530
1001 ▼a Boguski, John .
24510 ▼a Local Ion Velocity Measurements in the MST Saturated Single Helical Axis State.
260 ▼a [S.l.]: ▼b The University of Wisconsin - Madison., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 176 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
500 ▼a Advisor: Nornberg, Mark
5021 ▼a Thesis (Ph.D.)--The University of Wisconsin - Madison, 2019.
506 ▼a This item must not be sold to any third party vendors.
520 ▼a The first local velocity measurements of helical equilibrium plasmas in the RFP are made to characterize the equilibrium flow profile. In high current, low density MST plasmas, the island associated with the innermost resonant tearing mode can grow and envelop the magnetic axis, resulting in a saturated Single Helical Axis (SHAx) equilibrium. The process by which this self-organized transition occurs is not fully understood. Theory and modeling suggest that viscous dissipation or large flow or magnetic shear might stimulate the transition. Local, toroidally resolved non-axisymmetric velocity measurements are obtained with a CHERS diagnostic while using a resonant magnetic perturbation to control the orientation of the helical plasma. The axisymmetric part of the flow is a rigid-rotor-like poloidal flow and relatively flat toroidal flow. Outside of the core, r/a > 0.5, the non-axisymmetric flow shows variations of order 10 km/s and more structure than a simple sinusoidal variation matching the helical variation of the magnetic axis. The toroidally resolved helical flow shear measured by CHERS may be comparable to strength of the critical shear necessary to mute nonlinear coupling of tearing modes. Flow measurements are compared with preliminary NIMROD simulations of visco-resistive, single-fluid MHD in toroidal and cylindrical geometry with full and limited axial periodicity. Both measurements and toroidal simulations show stronger inboard flows relative to the outboard. In the experiment, the n = 5 component of the poloidal flow is phase shifted by ~0.7 rad from the reconnection-like flow observed in the simulations, possibly due to decoupling of the ion and electron fluids over much of the plasma.
590 ▼a School code: 0262.
650 4 ▼a Plasma physics.
650 4 ▼a Physics.
690 ▼a 0759
690 ▼a 0605
71020 ▼a The University of Wisconsin - Madison. ▼b Physics.
7730 ▼t Dissertations Abstracts International ▼g 81-03B.
773 ▼t Dissertation Abstract International
790 ▼a 0262
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15493435 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK