MARC보기
LDR00000nam u2200205 4500
001000000434356
00520200226150034
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781085753777
035 ▼a (MiAaPQ)AAI22620136
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 400
1001 ▼a Ulinski, Morgan.
24510 ▼a Leveraging Text-to-Scene Generation for Language Elicitation and Documentation.
260 ▼a [S.l.]: ▼b Columbia University., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 219 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-02, Section: A.
500 ▼a Advisor: Hirschberg, Julia.
5021 ▼a Thesis (Ph.D.)--Columbia University, 2019.
506 ▼a This item must not be sold to any third party vendors.
520 ▼a Text-to-scene generation systems take input in the form of a natural language text and output a 3D scene illustrating the meaning of that text. A major benefit of text-to-scene generation is that it allows users to create custom 3D scenes without requiring them to have a background in 3D graphics or knowledge of specialized software packages. This contributes to making text-to-scene useful in scenarios from creative applications to education. The primary goal of this thesis is to explore how we can use text-to-scene generation in a new way: as a tool to facilitate the elicitation and formal documentation of language. In particular, we use text-to-scene generation (a) to assist field linguists studying endangered languages
590 ▼a School code: 0054.
650 4 ▼a Computer science.
650 4 ▼a Linguistics.
650 4 ▼a Language.
690 ▼a 0984
690 ▼a 0290
690 ▼a 0679
71020 ▼a Columbia University. ▼b Computer Science.
7730 ▼t Dissertations Abstracts International ▼g 81-02A.
773 ▼t Dissertation Abstract International
790 ▼a 0054
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15493689 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK