MARC보기
LDR00000nam u2200205 4500
001000000436032
00520200228112332
008200131s2018 ||||||||||||||||| ||eng d
020 ▼a 9781392473856
035 ▼a (MiAaPQ)AAI10937378
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 540
1001 ▼a DeGregorio, Zachary Patrick.
24510 ▼a Chemical Vapor Deposition Growth of Two-dimensional Transition Metal Dichalcogenides and Related Heterostructures.
260 ▼a [S.l.]: ▼b University of Minnesota., ▼c 2018.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2018.
300 ▼a 192 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
500 ▼a Advisor: Johns, James E.
5021 ▼a Thesis (Ph.D.)--University of Minnesota, 2018.
506 ▼a This item must not be sold to any third party vendors.
506 ▼a This item must not be added to any third party search indexes.
520 ▼a Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are atomically thin, layered materials with unique physical and electronic properties relative to their bulk forms. Due to these properties, 2D TMDCs show promise for many applications, including catalysis, nanoelectronics, optoelectronics, and spin- and valleytronics. To utilize TMDCs for these applications, they must first be reproducibly isolated. Much previous work in this area has resulted in material batches with low yield, small crystal sizes, and little control over the crystal morphology and orientation. Here, I present the reproducible chemical vapor deposition (CVD) growth of a wide array of 2D TMDCs, including MoS2, WS2, MoTe2, NbS2, and WSe2. Control of the growth of these materials is achieved through the optimization of many parameters, including substrate surface chemistry and synthetic growth parameters. Through the optimization of these parameters, I demonstrate control over the resulting material thickness, phase, and morphology.These high-quality TMDCs are subsequently used to grow many relevant heterostructures, including MoS2/WS2 lateral and vertical heterostructures, MoO2/MoS2 core/shell plates, 2H-1T쨈 MoTe2 few-layer homojunctions, and WS2/NbS2 lateral heterostructures, and the utility of these heterostructures is assessed. MoS2/WS2 heterostructures show promise as a semiconductor-semiconductor heterostructure in which the nature of the alignment is controlled by the initial MoS2 seed crystal. MoO2/MoS2 core/shell plates are freestanding and show epitaxial alignment with the underlying crystal substrate, with potential applications in catalysis. 2H-1T쨈 MoTe2 few-layer homojunctions are grown using a patternable phase engineering procedure, and devices fabricated from these homojunctions show reduced contact resistance relative to 2H MoTe2 devices with noble metal contacts. Finally, WS2/NbS2 lateral heterostructures show promise as an alternative metal-semiconductor heterostructure system for creating 2D TMDC devices with low contact resistance. The controlled CVD growth of these materials and heterostructures bolsters their future use for relevant applications.
590 ▼a School code: 0130.
650 4 ▼a Chemistry.
690 ▼a 0485
71020 ▼a University of Minnesota. ▼b Chemistry.
7730 ▼t Dissertations Abstracts International ▼g 81-06B.
773 ▼t Dissertation Abstract International
790 ▼a 0130
791 ▼a Ph.D.
792 ▼a 2018
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15490370 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1816162
991 ▼a E-BOOK