MARC보기
LDR00000nam u2200205 4500
001000000436168
00520200228134130
008200131s2017 ||||||||||||||||| ||eng d
020 ▼a 9781687931719
035 ▼a (MiAaPQ)AAI10624033
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 540
1001 ▼a Slaymaker, Laura E.
24510 ▼a Surface Modifications of Novel Electroactive Materials for Applications in Lithium-ion Batteries and Water Purification.
260 ▼a [S.l.]: ▼b The University of Wisconsin - Madison., ▼c 2017.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2017.
300 ▼a 118 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
500 ▼a Advisor: Hamers, Robert J.
5021 ▼a Thesis (Ph.D.)--The University of Wisconsin - Madison, 2017.
506 ▼a This item must not be sold to any third party vendors.
506 ▼a This item must not be added to any third party search indexes.
520 ▼a Electroactive materials, such as those found in lithium-ion batteries and devices for water purification, are important for everyday life. Lithium-ion batteries are ubiquitous in the technology of today and provide a means to store energy created from renewable sources to lessen our dependence on fossil fuels. However, materials used in batteries lose capacity over time due to degradation reactions that occur inside the battery. Favorable formation of the solid electrolyte interphase (SEI) layer on the anode, and the analogous cathode electrolyte interphase (CEI) layer on the cathode, is critical to the operation of a battery. This work investigated forming a cross-linked surface layer on silicon nanoparticles, a next-generation, high-capacity anode material, to prevent continual SEI layer formation. This work also examined face-dependent reactivity of a common cathode material, LiCoO2, with an Al2O3 coating deposited via atomic layer deposition. It was found that the edge plane had nearly twice as thick of an Al2O3 coating as compared to the basal plane of LiCoO2. Finally, this work showed that a conductive polymer electrode could produce hydroxyl radicals for water purification and was compared to boron-doped diamond electrodes, one of the best performing hydroxyl radical producing electrodes.
590 ▼a School code: 0262.
650 4 ▼a Analytical chemistry.
650 4 ▼a Chemistry.
690 ▼a 0486
690 ▼a 0485
71020 ▼a The University of Wisconsin - Madison. ▼b Chemistry.
7730 ▼t Dissertations Abstracts International ▼g 81-04B.
773 ▼t Dissertation Abstract International
790 ▼a 0262
791 ▼a Ph.D.
792 ▼a 2017
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15490246 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK