MARC보기
LDR00000nam u2200205 4500
001000000436263
00520200228140236
008200131s2019 ||||||||||||||||| ||eng d
020 ▼a 9781085579544
035 ▼a (MiAaPQ)AAI13806987
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 612
1001 ▼a Solomon, Ethan A.
24510 ▼a Characterization and Perturbation of Functional Networks That Support Human Memory.
260 ▼a [S.l.]: ▼b University of Pennsylvania., ▼c 2019.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2019.
300 ▼a 150 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
500 ▼a Advisor: Kahana, Michael J.
5021 ▼a Thesis (Ph.D.)--University of Pennsylvania, 2019.
506 ▼a This item must not be sold to any third party vendors.
506 ▼a This item must not be added to any third party search indexes.
520 ▼a Episodic memory is essential to our daily lives, as it attaches meaning to the constant stream of sensory inputs to the brain. However, episodic memory often fails in a number of common neurocognitive disorders. Effective therapies remain elusive, owing to the complexity of brain networks and neural processes that support episodic encoding and retrieval. In particular, it is not understood how inter-regional communication within the brain supports memory function, though such communication may be critical to the highly integrative nature of episodic memory. To uncover the patterns of memory-related functional connectivity, we asked a large cohort of neurosurgical patients with indwelling electrodes to perform a verbal free-recall task, in which patients viewed lists of simple nouns and recalled them a short time later. As patients performed this task, we collected intracranial EEG (iEEG) from electrodes placed on the cortical surface and within the medial temporal lobe (MTL). First, we examined whole-brain functional networks that emerged during the encoding and retrieval phases of this task, using spectral methods to correlate frequency-specific signals between brain regions. We identified a dynamic network of regions that exhibited enhanced theta (3-8 Hz) connectivity during successful memory processing, whereas regions tended to desynchronize at high frequencies (30-100 Hz). Next, using only electrodes placed within the MTL, we asked whether functional coupling was also observed among this mesoscale subnetwork of highly specialized regions that play an outsize role in memory. Recapitulating our earlier findings, we noted broadly enhanced theta connectivity within the MTL, centering on the left entorhinal cortex during successful encoding operations. Finally, to determine whether such low-frequency functional connections reflect correlative or causal relations in the brain, we applied direct electrical stimulation via electrodes placed within the MTL. We found that low-frequency connections (5-13 Hz) predicted the emergence of theta activity at distant regions in the brain - particularly when stimulation occurred near white matter - indicating the potential causal relevance of iEEG-based functional connections. Taken together, these studies underscore the importance of low-frequency functional coupling to memory across spatial scales, and suggest this form of coupling indicates a causal relation between brain regions.
590 ▼a School code: 0175.
650 4 ▼a Neurosciences.
650 4 ▼a Bioengineering.
650 4 ▼a Physiology.
690 ▼a 0317
690 ▼a 0202
690 ▼a 0719
71020 ▼a University of Pennsylvania. ▼b Bioengineering.
7730 ▼t Dissertations Abstracts International ▼g 81-02B.
773 ▼t Dissertation Abstract International
790 ▼a 0175
791 ▼a Ph.D.
792 ▼a 2019
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T15490491 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202002 ▼f 2020
990 ▼a ***1008102
991 ▼a E-BOOK