MARC보기
LDR00000cam u2200205Ii 4500
001000000438681
00520200306154429
007cr cnu|||unuuu
008170523t20172017njua ob 001 0 eng d
019 ▼a 984688582
020 ▼a 9781400885398 ▼q (electronic bk.)
020 ▼a 1400885396 ▼q (electronic bk.)
020 ▼z 9780691158662
035 ▼a 1467849 ▼b (N$T)
035 ▼a (OCoLC)987790936 ▼z (OCoLC)984688582
037 ▼a 22573/ctt1vwmkm3 ▼b JSTOR
040 ▼a N$T ▼b eng ▼e rda ▼e pn ▼c N$T ▼d IDEBK ▼d N$T ▼d OCLCF ▼d YDX ▼d EBLCP ▼d COO ▼d STF ▼d OCLCQ ▼d IDB ▼d JSTOR ▼d OCLCO ▼d DEGRU ▼d HEBIS ▼d UAB ▼d WTU ▼d U3W ▼d NAM ▼d OH1 ▼d 247004
050 4 ▼a QA183 ▼b .O44 2017
072 7 ▼a MAT ▼x 002040 ▼2 bisacsh
072 7 ▼a MAT012000 ▼2 bisacsh
072 7 ▼a MAT014000 ▼2 bisacsh
08204 ▼a 512.2 ▼2 23
24500 ▼a Office hours with a geometric group theorist/ ▼c edited by Matt Clay and Dan Margalit. ▼h [electronic resource].
260 1 ▼a Princeton, New Jersey: ▼b Princeton University Press, ▼c [2017].
300 ▼a 1 online resource (xii, 441 pages): ▼b illustrations.
336 ▼a text ▼b txt ▼2 rdacontent
337 ▼a computer ▼b c ▼2 rdamedia
338 ▼a online resource ▼b cr ▼2 rdacarrier
347 ▼a text file ▼b PDF ▼2 rda
504 ▼a Includes bibliographical references and index.
50500 ▼t Groups / ▼r Matt Clay and Dan Margalit -- ▼t ...and spaces / ▼r Matt Clay and Dan Margalit -- ▼t Groups acting on trees / ▼r Dan Margalit -- ▼t Free groups and folding / ▼r Matt Clay -- ▼t The ping-pong lemma / ▼r Johanna Mangahas -- ▼t Automorphisms of free groups / ▼r Matt Clay -- ▼t Quasi-isometries / ▼r Dan Margalit and Anne Thomas -- ▼t Dehn functions / ▼t Timothy Riley -- ▼t Hyperbolic groups / ▼r Moon Duchin -- ▼t Ends of groups / ▼r Nic Koban and John Meier -- ▼t Asymptotic dimension / ▼r Greg Bell -- ▼t Growth of groups / ▼r Eric Freden -- ▼t Coxeter groups / ▼r Adam Piggott -- ▼t Right-angled artin groups / ▼r Robert W. Bell and Matt Clay -- ▼t Lamplighter groups / ▼r Jennifer Taback -- ▼t Thompson's group / ▼r Sean Cleary -- ▼t Mapping class groups / ▼r Tara Brendle, Leah Childers, and Dan Margalit -- ▼t Braids / ▼r Aaron Abrams.
520 ▼a Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors.An essential primer for undergraduates making the leap to graduate work, the book begins with free groups--actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples.Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.
546 ▼a In English.
5880 ▼a Online resource; title from PDF title page (EBSCO, viewed June 6, 2017).
590 ▼a Master record variable field(s) change: 050
650 0 ▼a Geometric group theory.
650 7 ▼a MATHEMATICS / Algebra / Intermediate ▼2 bisacsh
650 7 ▼a Geometric group theory. ▼2 fast ▼0 (OCoLC)fst00940833
650 7 ▼a MATHEMATICS / Geometry / General ▼2 bisacsh
655 4 ▼a Electronic books.
7001 ▼a Clay, Matt, ▼e editor,
7001 ▼a Margalit, Dan, ▼d 1976- ▼e editor,
85640 ▼3 EBSCOhost ▼u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1467849
938 ▼a ProQuest MyiLibrary Digital eBook Collection ▼b IDEB ▼n cis38050523
938 ▼a EBL - Ebook Library ▼b EBLB ▼n EBL4903962
938 ▼a YBP Library Services ▼b YANK ▼n 13277876
938 ▼a EBSCOhost ▼b EBSC ▼n 1467849
938 ▼a De Gruyter ▼b DEGR ▼n 9781400885398
990 ▼a ***1008102
991 ▼a E-BOOK
994 ▼a 92 ▼b N$T