LDR | | 05117cam a2200565Ii 4500 |
001 | | 000000465379 |
005 | | 20220105143830 |
006 | | m d |
007 | | cr |n||||||||| |
008 | | 210319s2021 maua ob 001 0 eng d |
010 | |
▼a 2020031406 |
019 | |
▼a 1244549612 |
020 | |
▼a 9780262362153
▼q (electronic bk.) |
020 | |
▼a 0262362155
▼q (electronic bk.) |
020 | |
▼z 9780262045254 |
020 | |
▼z 0262045257 |
035 | |
▼a 2521107
▼b (N$T) |
035 | |
▼a (OCoLC)1242406924
▼z (OCoLC)1244549612 |
040 | |
▼a YDX
▼b eng
▼e rda
▼c YDX
▼d N$T
▼d OCLCO
▼d UCW
▼d EBLCP
▼d 247004 |
050 | 4 |
▼a QA76.889
▼b .L57 2021 |
082 | 04 |
▼a 006.3/843
▼2 23 |
100 | 1 |
▼a Lipton, Richard J.,
▼e author. |
240 | 10 |
▼a Quantum algorithms via linear algebra |
245 | 10 |
▼a Introduction to quantum algorithms via linear algebra/
▼c Richard J. Lipton, Kenneth W. Regan. |
250 | |
▼a Second edition. |
260 | |
▼a Cambridge, Massachusetts:
▼b The MIT Press,
▼c [2021]. |
300 | |
▼a 1 online resource:
▼b illustrations. |
336 | |
▼a text
▼b txt
▼2 rdacontent |
337 | |
▼a computer
▼b c
▼2 rdamedia |
338 | |
▼a online resource
▼b cr
▼2 rdacarrier |
504 | |
▼a Includes bibliographical references and index. |
505 | 0 |
▼a Intro -- Title Page -- Copyright -- Dedication -- Table of Contents -- Preface to the First Edition -- Preface to the Second Edition -- Acknowledgments -- I. Essential Algorithms -- 1. Introduction -- 1.1. The Model -- 1.2. The Space and the States -- 1.3. The Operations -- 1.4. Where Is the Input? -- 1.5. What Exactly Is the Output? -- 1.6. Summary and Notes -- 2. Numbers and Strings -- 2.1. Asymptotic Notation -- 2.2. Problems -- 2.3. Selected Answers -- 2.4. Summary and Notes -- 3. Basic Linear Algebra -- 3.1. Hilbert Spaces -- 3.2. Products of Spaces and Tensor Products -- 3.3. Matrices |
505 | 8 |
▼a 3.4. Complex Spaces and Inner Products -- 3.5. Tensor Products of Matrices -- 3.6. Matrices, Graphs, and Sums over Paths -- 3.7. Problems -- 3.8. Selected Answers -- 3.9. Summary and Notes -- 4. Boolean Functions, Quantum Bits, and Feasibility -- 4.1. Feasible Boolean Functions -- 4.2. An Example -- 4.3. Quantum Representation of Boolean Arguments -- 4.4. Quantum Feasibility -- 4.5. Examples of Quantum Circuits -- 4.6. Problems -- 4.7. Selected Answers -- 4.8. Summary and Notes -- 5. Special Matrices -- 5.1. Hadamard Matrices -- 5.2. Fourier Matrices |
505 | 8 |
▼a 5.3. Reversible Computation and Permutation Matrices -- 5.4. Feasible Diagonal Matrices -- 5.5. Reflections -- 5.6. Problems -- 5.7. Selected Answers -- 5.8. Summary and Notes -- 6. Tricks -- 6.1. Start Vectors -- 6.2. Controlling and Copying Base States -- 6.3. The Copy-Uncompute Trick -- 6.4. Superposition Tricks -- 6.5. Flipping a Switch -- 6.6. Measurement Tricks -- 6.7. Partial Transforms -- 6.8. Problems -- 6.9. Selected Answers -- 6.10. Summary and Notes -- 7. Phil's Algorithm -- 7.1. The Algorithm -- 7.2. The Analysis -- 7.3. An Example -- 7.4. A Two-Qubit Example -- 7.5. Phil Measures Up |
505 | 8 |
▼a 7.6. Quantum Mazes Versus Circuits Versus Matrices -- 7.7. Problems -- 7.8. Selected Answers -- 7.9. Summary and Notes -- 8. Deutsch's Algorithm -- 8.1. The Algorithm -- 8.2. The Analysis -- 8.3. Superdense Coding and Teleportation -- 8.4. Problems -- 8.5. Summary and Notes -- 9. The Deutsch-Jozsa Algorithm -- 9.1. The Algorithm -- 9.2. The Analysis -- 9.3. Problems -- 9.4. Summary and Notes -- 10. Simon's Algorithm -- 10.1. The Algorithm -- 10.2. The Analysis -- 10.3. Problems -- 10.4. Summary and Notes -- 11. Shor's Algorithm -- 11.1. Strategy -- 11.2. Good Numbers |
505 | 8 |
▼a 11.3. The Quantum Part of the Algorithm -- 11.4. Analysis of the Quantum Part -- 11.5. Probability of a Good Number -- 11.6. Using a Good Number -- 11.7. Continued Fractions -- 11.8. Problems -- 11.9. Summary and Notes -- 12. Factoring Integers -- 12.1. Some Basic Number Theory -- 12.2. Periods Give the Order -- 12.3. Factoring -- 12.4. Problems -- 12.5. Summary and Notes -- 13. Grover's Algorithm -- 13.1. The Algorithm -- 13.2. The Analysis -- 13.3. The General Case, with k Unknown -- 13.4. Problems -- 13.5. Summary and Notes -- II. Advanced Algorithms -- 14. Physics of Quantum Computing |
520 | |
▼a "This text introduces undergraduates to quantum computation in terms of elementary linear algebra by emphasizing computation and algorithms rather than physics"--
▼c Provided by publisher. |
590 | |
▼a OCLC control number change |
650 | 0 |
▼a Quantum computers. |
650 | 0 |
▼a Computer algorithms. |
650 | 0 |
▼a Algebras, Linear. |
655 | 0 |
▼a Electronic books. |
655 | 4 |
▼a Electronic books. |
700 | 1 |
▼a Regan, Kenneth W.,
▼e author, |
776 | 08 |
▼i Print version:
▼a Lipton, Richard J.
▼s Quantum algorithms via linear algebra.
▼t Introduction to quantum algorithms via linear algebra.
▼b Second edition.
▼d Cambridge, Massachusetts : The MIT Press, [2021]po
▼z 9780262045254
▼w (DLC) 2020031406
▼w (OCoLC)1176319525 |
856 | 40 |
▼3 EBSCOhost
▼u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2521107 |
938 | |
▼a EBSCOhost
▼b EBSC
▼n 2521107 |
990 | |
▼a ***1012033 |
991 | |
▼a E-BOOK |
994 | |
▼a 92
▼b N$T |