MARC보기
LDR01768nam u200481 4500
001000000469811
00520220223114805
008220131s2021 us ||||||||||||||c||eng d
020 ▼a 9798492753658
035 ▼a (MiAaPQ)AAI28718099
040 ▼a MiAaPQ ▼c MiAaPQ ▼d 247004
0820 ▼a 621.3
1001 ▼a Hu, Hanbin.
24510 ▼a Machine Learning Techniques for Rare Failure Detection in Analog and Mixed-Signal Verification and Test.
260 ▼a [S.l.]: ▼b University of California, Santa Barbara., ▼c 2021.
260 1 ▼a Ann Arbor: ▼b ProQuest Dissertations & Theses, ▼c 2021.
300 ▼a 192 p.
500 ▼a Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
500 ▼a Advisor: Li, Peng.
5021 ▼a Thesis (Ph.D.)--University of California, Santa Barbara, 2021.
506 ▼a This item must not be sold to any third party vendors.
590 ▼a School code: 0035.
650 4 ▼a Computer engineering.
650 4 ▼a Artificial intelligence.
650 4 ▼a Computer science.
690 ▼a 0464
690 ▼a 0800
690 ▼a 0984
71020 ▼a University of California, Santa Barbara. ▼b Electrical & Computer Engineering.
7730 ▼t Dissertations Abstracts International ▼g 83-05B.
773 ▼t Dissertation Abstract International
790 ▼a 0035
791 ▼a Ph.D.
792 ▼a 2021
793 ▼a English
85640 ▼u http://www.riss.kr/pdu/ddodLink.do?id=T16054363 ▼n KERIS ▼z 이 자료의 원문은 한국교육학술정보원에서 제공합니다.
980 ▼a 202202 ▼f 2022
990 ▼a ***1012033
991 ▼a E-BOOK