대구한의대학교 향산도서관

상세정보

부가기능

Statistical Machine Learning Methods for the Large-Scale Analysis of Neural Data

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Statistical Machine Learning Methods for the Large-Scale Analysis of Neural Data.
개인저자Mena, Gonzalo E.
단체저자명Columbia University. Statistics.
발행사항[S.l.]: Columbia University., 2018.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2018.
형태사항197 p.
기본자료 저록Dissertation Abstracts International 79-11B(E).
Dissertation Abstract International
ISBN9780438159853
학위논문주기Thesis (Ph.D.)--Columbia University, 2018.
일반주기 Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
Adviser: Liam M. Paninski.
요약Modern neurotechnologies enable the recording of neural activity at the scale of entire brains and with single-cell resolution. However, the lack of principled approaches to extract structure from these massive data streams prevent us from fully
요약The second part focuses on the simultaneous electrical stimulation and recording of neurons using large electrode arrays. There, identification of neural activity is hindered by stimulation artifacts that are much larger than spikes, and overlap
요약The third part is motivated by the problem of inference of neural dynamics in the worm C.elegans: when taking a data-driven approach to this question, e.g., when using whole-brain calcium imaging data, one is faced with the need to match neural
일반주제명Statistics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼