대구한의대학교 향산도서관

상세정보

부가기능

Simultaneous Analysis of Large Scale Datasets in Different ChIP-seq Problem Settings

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Simultaneous Analysis of Large Scale Datasets in Different ChIP-seq Problem Settings.
개인저자Chen, Kailei.
단체저자명The University of Wisconsin - Madison. Statistics.
발행사항[S.l.]: The University of Wisconsin - Madison., 2018.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2018.
형태사항85 p.
기본자료 저록Dissertation Abstracts International 80-02B(E).
Dissertation Abstract International
ISBN9780438403796
학위논문주기Thesis (Ph.D.)--The University of Wisconsin - Madison, 2018.
일반주기 Source: Dissertation Abstracts International, Volume: 80-02(E), Section: B.
Adviser: Sunduz Keles.
요약Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a common genomics tool for studying regulation of transcription. Analyses of ChIP-seq data typically concern: i) binding state inference, which aims at detecting the DNA loci occ
요약Chapter 2 introduces a MAP-based Asymptotic Derivations from Bayes (MAD-Bayes) method based on strong assumptions in MBASIC framework. This results in a K-means-like optimization algorithm which converges rapidlyThe fast-converging nature enable
요약In Chapter 3, I extends the MAD-Bayes MBASIC to the allele-specific analysis setting, via a variance-stabilizing transformation, enabling the method to apply discrete distributions in both binding state and allele-specific binding problems. Appl
일반주제명Statistics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼