대구한의대학교 향산도서관

상세정보

부가기능

Strategic Monte Carlo and Variational Methods in Statistical Data Assimilation for Nonlinear Dynamical Systems

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Strategic Monte Carlo and Variational Methods in Statistical Data Assimilation for Nonlinear Dynamical Systems.
개인저자Shirman, Aleksandra.
단체저자명University of California, San Diego. Physics.
발행사항[S.l.]: University of California, San Diego., 2018.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2018.
형태사항102 p.
기본자료 저록Dissertation Abstracts International 79-11B(E).
Dissertation Abstract International
ISBN9780438088764
학위논문주기Thesis (Ph.D.)--University of California, San Diego, 2018.
일반주기 Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
Adviser: Henry D. I. Abarbanel.
요약Data Assimilation (DA) is a method through which information is extracted from measured quantities and with the help of a mathematical model is transferred through a probability distribution to unknown or unmeasured states and parameters charact
요약Many recent DA efforts rely on an probability distribution optimization that locates the most probable state and parameter values given a set of data. The procedure developed and demonstrated here extends the optimization by appending a biased r
요약This thesis will conclude with an exploration of the equivalence of machine learning and the formulation of statistical DA. The application of previous DA methods are demonstrated on the classic machine learning problem: the characterization of
일반주제명Physics.
Statistics.
Biophysics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼