자료유형 | 학위논문 |
---|---|
서명/저자사항 | A Parallel Adaptive Mesh Refinement Library for Cartesian Meshes. |
개인저자 | Ballesteros, Carlos . |
단체저자명 | Arizona State University. Aerospace Engineering. |
발행사항 | [S.l.]: Arizona State University., 2019. |
발행사항 | Ann Arbor: ProQuest Dissertations & Theses, 2019. |
형태사항 | 194 p. |
기본자료 저록 | Dissertations Abstracts International 81-03B. Dissertation Abstract International |
ISBN | 9781085665650 |
학위논문주기 | Thesis (Ph.D.)--Arizona State University, 2019. |
일반주기 |
Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Herrmann, Marcus. |
이용제한사항 | This item must not be sold to any third party vendors. |
요약 | This dissertation introduces FARCOM (Fortran Adaptive Refiner for Cartesian Orthogonal Meshes), a new general library for adaptive mesh refinement (AMR) based on an unstructured hexahedral mesh framework. As a result of the underlying unstructured formulation, the refinement and coarsening operators of the library operate on a single-cell basis and perform in-situ replacement of old mesh elements. This approach allows for h-refinement without the memory and computational expense of calculating masked coarse grid cells, as is done in traditional patch-based AMR approaches, and enables unstructured flow solvers to have access to the automated domain generation capabilities usually only found in tree AMR formulations. The library is written to let the user determine where to refine and coarsen through custom refinement selector functions for static mesh generation and dynamic mesh refinement, and can handle smooth fields (such as level sets) or localized markers (e.g. density gradients). The library was parallelized with the use of the Zoltan graph-partitioning library, which provides interfaces to both a graph partitioner (PT-Scotch) and a partitioner based on Hilbert space-filling curves. The partitioned adjacency graph, mesh data, and solution variable data is then packed and distributed across all MPI ranks in the simulation, which then regenerate the mesh, generate domain decomposition ghost cells, and create communication caches.Scalability runs were performed using a Leveque wave propagation scheme for solving the Euler equations. The results of simulations on up to 1536 cores indicate that the parallel performance is highly dependent on the graph partitioner being used, and differences between the partitioners were analyzed. FARCOM is found to have better performance if each MPI rank has more than 60,000 cells. |
일반주제명 | Aerospace engineering. Computer science. |
언어 | 영어 |
바로가기 |
: 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |