대구한의대학교 향산도서관

상세정보

부가기능

Design Space Covering for Uncertainty: Exploration of a New Methodology for Decision Making in Early Stage Design

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Design Space Covering for Uncertainty: Exploration of a New Methodology for Decision Making in Early Stage Design.
개인저자Claus, Lauren Rose.
단체저자명University of Michigan. Naval Architecture & Marine Engineering.
발행사항[S.l.]: University of Michigan., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항90 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781687927538
학위논문주기Thesis (Ph.D.)--University of Michigan, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Collette, Matthew David.
이용제한사항This item must not be sold to any third party vendors.This item must not be added to any third party search indexes.
요약Decisions made in early-stage design are of vital importance as they significantly impact the quality of the final design. Despite recent developments in design theory for early-stage design, designers of large complex systems still lack sufficient tools to make robust and reliable preliminary design decisions that do not have a lasting negative impact on the final design. Much of the struggle stems from uncertainty in early-stage design due to loosely defined problems and unknown parameters. Existing methods to handle this uncertainty in point-based design provide feasible, but often suboptimal, solutions that cover the range of uncertainty. Robust Optimization and Reliability Based Design Optimization are examples of point-based design methods that handle uncertainty. To maintain feasibility over the range of uncertainty, these methods accept suboptimal designs resulting in a design margin. In set-based design, design decisions are delayed preventing suboptimal final designs but at the expense of computational efficiency. This work proposes a method that evaluates a compromise between these two methodologies by evaluating the trade off of the induced regret and computational cost of keeping a larger design space. The design space covering for uncertainty (DSC-U) problem defines the metrics regret, which measures suboptimality, and space remaining, which quantifies the design space size after it is reduced. Solution methods for the DSC-U problem explore the trade space between these two metrics. When there is uncertainty in a problem, and the design space is reduced, there is the possibility that the optimal solution for the realized values of the uncertainty parameters has been eliminated
일반주제명Naval engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼