대구한의대학교 향산도서관

상세정보

부가기능

Computational Techniques to Identify Rare Events in Spatio-Temporal Data

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Computational Techniques to Identify Rare Events in Spatio-Temporal Data.
개인저자Mithal, Varun.
단체저자명University of Minnesota. Computer Science.
발행사항[S.l.]: University of Minnesota., 2018.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2018.
형태사항109 p.
기본자료 저록Dissertation Abstracts International 79-12B(E).
Dissertation Abstract International
ISBN9780438168640
학위논문주기Thesis (Ph.D.)--University of Minnesota, 2018.
일반주기 Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
Adviser: Vipin Kumar.
요약Recent attention on the potential impacts of land cover changes to the environment as well as long-term climate change has increased the focus on automated tools for global-scale land surface monitoring. Advancements in remote sensing and data c
요약We study the problem of identifying land cover changes such as forest fires as a supervised binary classification task with the following characteristics: (i) instead of true labels only imperfect labels are available for training samples. These
요약We explore approaches to reduce errors in remote sensing based classification products, which are common due to poor data quality (eg., instrument failure, atmospheric interference) as well as limitations of the classification models. We present
일반주제명Computer science.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼