대구한의대학교 향산도서관

상세정보

부가기능

Structured Learning with Parsimony in Measurements and Computations: Theory, Algorithms, and Applications

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Structured Learning with Parsimony in Measurements and Computations: Theory, Algorithms, and Applications.
개인저자Li, Xingguo.
단체저자명University of Minnesota. Electrical Engineering.
발행사항[S.l.]: University of Minnesota., 2018.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2018.
형태사항309 p.
기본자료 저록Dissertation Abstracts International 80-01B(E).
Dissertation Abstract International
ISBN9780438353886
학위논문주기Thesis (Ph.D.)--University of Minnesota, 2018.
일반주기 Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
Adviser: Jarvis D. Haupt.
요약In modern "Big Data" applications, structured learning is the most widely employed methodology. Within this paradigm, the fundamental challenge lies in developing practical, effective algorithmic inference methods. Often (e.g., deep learning) su
요약Toward this end, we make efforts to investigate the theoretical properties of models and algorithms that present significant improvement in measurement and computation requirement. In particular, we first develop randomized approaches for dimens
일반주제명Electrical engineering.
Computer engineering.
Computer science.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼