대구한의대학교 향산도서관

상세정보

부가기능

On Dilatations of Surface Automorphisms

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항On Dilatations of Surface Automorphisms.
개인저자Rafiqi, Ahmad.
단체저자명Cornell University. Mathematics.
발행사항[S.l.]: Cornell University., 2018.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2018.
형태사항59 p.
기본자료 저록Dissertation Abstracts International 80-01B(E).
Dissertation Abstract International
ISBN9780438342491
학위논문주기Thesis (Ph.D.)--Cornell University, 2018.
일반주기 Source: Dissertation Abstracts International, Volume: 80-01(E), Section: B.
Adviser: John H. Hubbard.
요약Suppose S is a compact topological surface without boundary, oriented and connected. In &conint
요약When the foliations of a pA map f can be oriented consistently in neighborhoods on S, the dilatation lambda f is an eigenvalue of the induced action f * on the homology group H1( S
요약In &conint
요약A square matrix A of non-negative entries is called mixing if some power An has only positive entries. If only the sum A+A 2+... is positive, A is ergodic. By the Perron-Frobenius theorem, an ergodic matrix has a real eigenvalue lambda > 0 (cal
요약On the other hand, Hamenstadt showed that out of dilatations smaller than R > 0 on a surface of fixed genus g, the proportion of those that have only real Galois conjugates approaches 1 as R &rarr
요약Eskin-Mirzakhani-Rafi (2016) and Hamenstadt (2016) independently showed that the number of periodic orbits of length less than log( R) for the Teichmuller flow on the moduli space of area one Abelian differentials on Sg grows like R4g--3/log(R)
일반주제명Mathematics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼