자료유형 | 학위논문 |
---|---|
서명/저자사항 | The Goodwillie Tower of Infinite Loops as Derived Functors. |
개인저자 | Konter, Johan. |
단체저자명 | Northwestern University. Mathematics. |
발행사항 | [S.l.]: Northwestern University., 2018. |
발행사항 | Ann Arbor: ProQuest Dissertations & Theses, 2018. |
형태사항 | 156 p. |
기본자료 저록 | Dissertation Abstracts International 79-11B(E). Dissertation Abstract International |
ISBN | 9780438125056 |
학위논문주기 | Thesis (Ph.D.)--Northwestern University, 2018. |
일반주기 |
Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
Adviser: Paul G. Goerss. |
요약 | We compare two different methods to compute the mod 2 homology of an infinite loop space. One method is to approximate the infinite loop functor using functor calculus. The other is to approximate the spectrum using an Adams resolution. We show |
일반주제명 | Mathematics. |
언어 | 영어 |
바로가기 |
: 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |