대구한의대학교 향산도서관

상세정보

부가기능

Alternating Multiblock Polyethylenes with Associating Groups: Self-Assembled Nanoscale Morphologies and Ion Transport

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Alternating Multiblock Polyethylenes with Associating Groups: Self-Assembled Nanoscale Morphologies and Ion Transport.
개인저자Yan, Lu.
단체저자명University of Pennsylvania. Chemical and Biomolecular Engineering.
발행사항[S.l.]: University of Pennsylvania., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항219 p.
기본자료 저록Dissertations Abstracts International 81-05B.
Dissertation Abstract International
ISBN9781088366080
학위논문주기Thesis (Ph.D.)--University of Pennsylvania, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
Advisor: Winey, Karen I.
이용제한사항This item must not be sold to any third party vendors.
요약Single-ion conductors based on block copolymers (BCPs) are promising solid-state electrolytes for energy storage systems. Their ability to self-assemble into distinct nanostructures can provide both high ion transference numbers and strong mechanical integrity. Connecting the microphase-separated morphologies to the ion transport properties in BCP electrolytes as well as designing polymers to produce specific ion-conducting domain remain a critically important challenge.Combining non-conducting polyethylene (PE) blocks that alternate with short strongly-interacting ionic blocks leads to a wide range of intriguing nanoscale phase-separated morphologies. Depending on the PE block lengths, these alternating multiblock copolymers exhibit amorphous or semicrystalline morphologies and their ionic aggregation behaviors are further tunable via the modification of ionic block chemistry. When the PE blocks are long, such as 21 or 46 methylene units, the alternating multiblock PEs are semicrystalline and chains fold close to the short ionic blocks with the ionic groups aggregating into layers embedded in the crystalline regions, as determined both in bulk and solution-growth crystals. Remarkably, the ion transport in such semicrystalline layered morphology is decoupled from the polymer segmental motion even above these polymer glass transition temperatures. These layered ionic aggregates can transform upon heating into bicontinuous gyroid, hexagonal or disordered phases as controlled by the volume fraction and electrostatic interactions of the ionic blocks. At the same temperature and composition, the 3D interconnected gyroid structure exhibits higher ionic conductivity than the layered or hexagonal phases. Shortening the PE block lengths to 6 or 12 methylene units prohibits crystallization and produces nanoscale ionic domains with the connectivity of ionic aggregates influenced by total ion content. Increasing the conducting domain connectivity to form a percolated structure facilitates decoupling ion transport from the polymer segmental motion.In contrast to conventional salt-doped BCP electrolyte systems, the ion-conducting nanoscale domains in these alternating multiblock PEs mainly consist of ionic groups and are inherently favorable for fast ion conduction. Producing semicrystalline layered or highly interconnected ion-conducting domains that decouple the ionic conductivity from polymer segmental dynamics provides promising design principles toward efficient solid-state polymer electrolytes.
일반주제명Nanoscience.
Chemistry.
Materials science.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼